
Vol.:(0123456789)

Education Tech Research Dev
https://doi.org/10.1007/s11423-023-10328-8

1 3

DEVELOPMENT ARTICLE

Block‑based versus text‑based programming: a comparison
of learners’ programming behaviors, computational thinking
skills and attitudes toward programming

Dan Sun1 · Chee‑Kit Looi2 · Yan Li3 · Chengcong Zhu4 · Caifeng Zhu5 ·
Miaoting Cheng6

Accepted: 10 October 2023
© Association for Educational Communications and Technology 2023

Abstract
In the current era where computational literacy holds significant relevance, a growing
number of schools across the globe have placed emphasis on K-12 programming educa-
tion. This field of education primarily comprises two distinct modalities—the block-based
programming modality (BPM) and the text-based programming modality (TPM). Previ-
ous research may not have provided a complete understanding of the differences between
these two modalities as it did not take into account both the learning process and learning
outcomes. This study aimed to compare secondary students’ programming behaviors, com-
putational thinking skills, and attitudes toward programming between the two modalities
through a quasi-experimental design in a Chinese secondary school. The findings showed
that (1) learners in TPM encountered more syntactical errors and spent more time between
two clicks of debugging, while learners in BPM had more code-changing behaviors by
adjusting programming blocks, made more attempts of debugging, and had more irrelevant
behaviors; (2) learners in BPM achieved a higher level of computational thinking skills;
(3) learners in both modalities experienced a slight decrease in confidence and enjoyment,
while learners in BPM had higher interest levels in programming. (4) Code Changer, Mini-
mal Debugger, Maximal Debugger, Distracted Coder and Average Coder were identified
through students’ programming behavior in the two programming modalities, and differ-
ences in their CT skills and attitudinal data were revealed. Lastly, pedagogical implications
based on the findings are also discussed.

Keywords Computational thinking · Text-based programming modality · Block-based
programming modality · Programming behaviors · Instructional strategies

Introduction

Computational thinking (CT) is an essential twenty-first-century competency inspired by
computer science practice and should be a part of all K-12 students’ analytic toolkits (Ma
et al., 2021; Wing, 2014). To foster learners’ CT, many countries (e.g., China, the United
States, and the United Kingdom) have integrated computer programming into their K-12

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11423-023-10328-8&domain=pdf
http://orcid.org/0000-0003-2467-7406
http://orcid.org/0000-0002-0640-1783

 D. Sun et al.

1 3

curricula (Angeli et al., 2016; Bey et al., 2019; Jocius et al., 2021). Block-based program-
ming modality (BPM) and text-based programming modality (TPM) are two major instruc-
tional modalities that have been widely used in K-12 programming education (Weintrop &
Wilensky, 2019). BPM could provide visual cues to denote how and where to use a given
command (Tempel, 2013), which makes computer science accessible and easy-to-under-
stand to novice learners (Bau et al., 2017). Conversely, being a more conventional way,
TPM requires learners to have the ability to write codes in various text-based programming
languages (e.g., Python and Java), which would be useful in carrying out professional pro-
gramming projects and pursuing computer science careers (HelloGitHub, 2023).

While previous research has explored the differences in programming performance
between TPM and BPM in terms of their effectiveness in supporting student learning
(Weintrop & Wilensky, 2017) and the prerequisite knowledge and skills required to use
each modality (Duncan et al., 2014), there is still a research gap in investigating how the
learning process affects learning performance in the context of using TPM and BPM.
There is a need for a fine-grained investigation of the differences between TPM and BPM
that takes into account both the learning process and learning performance (Grover, 2021;
Scherer et al., 2020; Weintrop & Wilensky, 2019). Given the importance of CT and com-
puter programming to K-12 curricula, it is important to understand the relative strengths
and weaknesses of each modality and how they can be used to support student learning
effectively. Our research aimed to fill this gap by comparing the effectiveness of TPM and
BPM in a Chinese secondary school using a quasi-experimental design. We examined
learners’ programming skills, CT skills, and attitudes toward programming in both modali-
ties to determine which modality was more effective in promoting students’ programming
practice. Our findings provide insights for educators on how to design more effective
instructional designs to support students’ programming skill acquisition and promote their
CT development. By comparing the two modalities, we hope to inform educational prac-
tice to better prepare students for future programming challenges and careers.

Literature review

Block‑based and text‑based programming modalities

As the Turing Award winner, referred to as the “Nobel Prize of Computing”, Dijkstra (1982)
argued, the tools we used had a far-reaching influence on transforming our thinking hab-
its and abilities. Echoing this idea, programming modality might have an important impact
on changing learners’ thinking, which is a critical factor that instructors should consider
in computer programming education. As two major programming modalities, BPM and
TPM have been widely integrated into K-12 education. BPM offers a visual programming
approach that utilizes a “programming-primitive-as-puzzle-piece metaphor” to design com-
puter programming (Bau et al., 2017). The visual illustration of a block presents available
commands in logically-organized drawers, denotes how and where a given command can
be used and prevents learners from making syntax errors during programming (Tempel,
2013; Weintrop & Wilensky, 2015). Due to these easy-to-use attributes, BPM makes com-
puter science accessible and easy-to-understand to novice learners (Grover & Basu, 2017).
Several BPM environments (see Fig. 1) are designed to lower the barrier to learning pro-
gramming by eliminating troublesome issues of syntax (Grover, 2021), including Scratch
(an event-driven block-based programming language and online community developed by

Block‑based versus text‑based programming: a comparison of…

1 3

Massachusetts Institute of Technology, https:// scrat ch. mit. edu/), Blockly (a web-based and
block-based programming editor developed by Google, https:// devel opers. google. com/ block
ly), and Alice (a block-based programming environment developed by Carnegie Mellon
University, https:// www. alice. org/). BPM has been extensively used in introductory com-
puter science classes across K-12 education (Kölling et al., 2015).

As another widely-used modality in K-12 programming education, TPM is integrated
especially for learners who can understand the syntax and logic of text-based codes (Yucer
& Rizvanoglu, 2019). Figure 2 shows three typical text-based programming languages,
including Python (a dynamic and interpreted language designed by Guido van Rossum,
https:// www. python. org/), C (a general-purpose programming language created by Dennis
Ritchie), and Java (a class-based and object-oriented programming language developed by
James Gosling, https:// www. java. com/). Among these languages, Python is the official pro-
gramming language in selective Information Technology Curricula for Chinese secondary
and high schools (Ministry of Education, 2017). Compared with BPM, TPM is perceived
by learners as a more authentic and powerful tool in learning programming (Weintrop &
Wilensky, 2015). TPM enables learners to proceed to a higher level of programming exper-
tise and provides opportunities for them to participate in professional programming pro-
jects (Weintrop & Wilensky, 2019). Hence, TPM is usually designed as the consequent
step for learners after they are versed in BPM (Armoni et al., 2015), which cannot be sub-
stituted by BPM. However, learners usually encounter syntax errors, feel frustrated when
stuck on these errors, and drop out easily in the higher-level programming courses in TPM

Fig. 1 Three typical block-based programming modalities

Fig. 2 Three typical text-based programming modalities

https://scratch.mit.edu/
https://developers.google.com/blockly
https://developers.google.com/blockly
https://www.alice.org/
https://www.python.org/
https://www.java.com/

 D. Sun et al.

1 3

(Falloon, 2016). Thus, various instructional strategies have been used to alleviate frustra-
tions and difficulties they may encounter (Taub et al., 2012), facilitate learners’ text-based
programming practice (Sun et al., 2021), and promote their interests and motivations to
learn with TPM (Alshaigy et al., 2015).

The research community has exhibited a growing interest in exploring the differences
and linkages between text-based programming (TPM) and block-based programming
(BPM). While BPM has been considered an effective way to introduce foundational pro-
gramming concepts and foster interest and motivation in novice learners (García et al.,
2015; Howland & Good, 2014; Wilson & Moffat, 2010), it may pose challenges for learn-
ers in managing complex programming projects or applying programming knowledge to
solve real-world problems (Duncan et al., 2014). TPM, on the other hand, is an essential
skill for future professional programming careers (TIOBE, 2023), but novice learners in
TPM may struggle with grammar and require more advanced programming knowledge and
skills (Armoni et al., 2015; Mladenović et al., 2018; Price & Barnes, 2015). Our study
aimed to compare the learning processes and outcomes in BPM and TPM for novice learn-
ers. By focusing specifically on the differences between the two programming modalities,
our study aimed to provide empirical evidence for educators and scholars to better under-
stand the strengths and weaknesses of each modality and how they can be used to support
novice learners in developing programming skills. Through this comparison, we hoped to
provide insights for educators to design more effective and efficient instructional designs to
support novices’ programming skill acquisition.

Computational thinking and programming

CT is a kind of analytical thinking that makes use of the common points with mathemati-
cal thinking, engineering, and scientific thinking (Wing, 2008), which could be fostered
through divergent ways and contexts (i.e., participating in unplugged CS games (Taub
et al., 2012), applying strategies to acquire information for language learning (Mannila
et al., 2014), joining STEM practices (Jocius et al., 2021)). Among different strategies, pro-
gramming has been proven to be one of the effective ways to improve learners’ CT skills
(Brennan & Resnick, 2012; Jiang et al., 2021; Pellas & Vosinakis, 2018). According to
Tsai et al. (2021), previous literature on CT can be summarized using domain-specific and
domain-general definitions. The domain-specific category indicates the domain-specific
knowledge or skills that are required to systematically solve the problems in the subject
domain of computer science or computer programming, researchers usually depend on a
specific popular programming language, so Dr. Scratch (Garneli & Chorianopoulos, 2018),
Bebras test (Rojas-López & García-Peñalvo, 2018), the Computational thinking test (CTt;
Román-González et al., 2017) were widely used as the assessment tool.

While in the domain-general definition, researchers defined CT as the competen-
cies required for solving problems systematically in humans’ daily lives and all learn-
ing domains, so CT covered a set of thinking skills of creativity, algorithmic thinking,
critical thinking, problem solving, establishing communication and cooperation (ISTE,
2015; Mannila et al., 2014; Riley & Hunt, 2014). Wing (2011) defined CT as a thought
process to effectively and efficiently deal with the problem, many researchers (Doleck
et al., 2017; Katai, 2015) have even viewed CT as an integrated ability including algo-
rithmic thinking, social cooperative capacities, creative thinking, and critical thinking.
It is obvious that the CT definition goes beyond problem solving contexts, and may need
to be regulated by higher-level metacognitive skills (Allsop, 2019). Drawing on ISTE

Block‑based versus text‑based programming: a comparison of…

1 3

(2015) and a range of research studies, Korkmaz et al. (2017) synthesized a definition of
CT as the capacity to use an algorithmic approach to address challenges, while also fos-
tering communication and collaboration in a team-based setting. This process calls for
utilizing innovative strategies to develop solutions that can tackle complex issues. The
authors also identified five key elements of CT: algorithmic thinking, problem-solving,
creativity, critical thinking, and cooperativity. Furthermore, Korkmaz et al. (2017) also
developed and validated a CT scale for assessing students’ CT skills. This instrument
has been widely utilized by various researchers to evaluate students’ CT proficiency
(Durak & Saritepeci, 2018; Ma et al., 2021; Pellas & Vosinakis, 2018).

Multiple analysis of the programming process

Prior empirical research has utilized multiple analytical methods to explore varied per-
spectives of learners’ programming processes. Wu et al. (2019) used a quantitative eth-
nography approach to analyze the collaborative programming between a high‐performing
and a low‐performing team. Pereira et al. (2020) conducted a clustering analysis based on
the students’ logs to inspect the patterns of programming behaviors in each student cluster
and explored how these behaviors reflect on the evaluative factors (effective or ineffec-
tive behaviors). Sun et al. (2021) applied mixed methods, including click stream analysis
and lag-sequential analysis, to analyze three contrasting pairs’ collaborative programming
behaviors, discourses, and perceptions. As a complementary, the traditional, summative
assessment (e.g., final tests, attitudinal test) can help reveal learners’ direct performances
of computer programming knowledge or attitude. Those studies indicated that multiple
analytical methods could be used to conduct the multidimensional analysis, which is ben-
eficial to demonstrate varied dimensions of programming learning.

As for the effectiveness of different programming modalities, many previous studies
measured learners’ mastery of knowledge and skills or learners’ attitudinal changes, rather
than learners’ higher-order thinking (Nolan & Bergin, 2016; Noone & Mooney, 2018). For
example, in the quasi-experiment reported by Eid and Millham (2012), learners started
with console-based procedural programming (e.g., COBOL) to gain a strong understand-
ing of basic programming concepts such as procedures, variables, and loops without need-
ing to learn the added complexities of a visual interface. The study by Weintrop (2015)
revealed that high school learners in BPM achieved higher scores on knowledge perfor-
mance and reported higher levels of confidence, enjoyment, and interest. Weintrop and
Wilensky (2017) designed a quasi-experimental study and found that high school learners
in BPM achieved greater learning gains in programming concepts (e.g., variables, loops,
conditionals, and functions) than in TPM in an introductory programming class.

Taken together, there is a current research trend to understand the difference in block-
based and text-based programming modalities in K12 formal education to better serve
secondary school students’ programming learning and improve their engagement in the
computer science field. In addition, following the analytical trend, this research collects
multi-modal data to analyze students’ programming behaviors, CT skills, and attitudes
toward programming in the two programming modalities.

 D. Sun et al.

1 3

Methodology

Research purpose and questions

This research aimed to gain a deeper understanding of how learning occurs in each
modality and to what extent each programming modality fosters their CT skills and their
positive attitudes toward programming. This study conducted a quasi-experiment design
in a secondary school. Multi-modal data (including learning platform log files, learners’
CT skills and their attitudinal data) were collected and different analytics approaches
(i.e., statistical analysis, clustering analysis) were used to compare learners’ program-
ming behaviors, CT skills, and attitudes toward programming in TPM and BPM. Based
on the results, this research will also seek to distill some pedagogical implications for
future instructional design and empirical computer programming research. The specific
research questions (RQ) are:

RQ1: What were the differences in learners’ behaviors in learning via TPM versus BPM?
RO2: What were the differences in learners’ CT skills in learning via TPM versus BPM?
RO3: What were the differences in learners’ perceived attitudes towards programming in

learning via TPM versus BPM?

Educational context and participants

The research was conducted in a compulsory course titled “Information Technology,”
which was carried out in a Chinese secondary school during the autumn of 2020. A
quasi-experimental design was utilized to investigate the differences in learners’ pro-
gramming behaviors, CT skills, and attitudes toward programming in TPM and BPM.
There were 32 learners (13 female and 19 male) in the TPM class and 32 learners (15
female and 17 male) in the BPM class. Students were around 13 years old, and most of
them did not have programming experience in formal education. Classes were taught
by the same instructor, who maintained a similar teaching style under two modalities,
offered the same instructional materials to learners, and used the same teaching guid-
ance for each class, except the materials were presented via TPM or BPM.

Instructional procedures

The instructor designed three phases and six instructional sessions in this course, with
each session lasting 45 min. In Phase I (the first session), the instructor introduced
basic concepts of programming to learners and illustrated the TPM or BPM to each
class. In Phase II (the second to fifth sessions), the instructor required learners to prac-
tice programming, including sequential, selective, looping, and function structures in
the text-based or block-based programming environment. In Phase III (the sixth ses-
sion), the instructor asked learners to complete a series of programming projects. The
series of programming projects tested learners’ basic programming knowledge taught in
Phase II. During the instruction and learning processes, the instructor taught concepts,

Block‑based versus text‑based programming: a comparison of…

1 3

algorithms, and coding operations with text-based programming in the TPM class and
with block-based programming in the BPM class.

Code4all (see Fig. 3a) was utilized as the programming platform which supports
both TPM and BPM. It is an online programming environment developed from Pencil
Code, which allows users to freely move back and forth between text-based and block-
based versions of their programs. The two programming modalities are isomorphic,
which means anything that can be done in one interface can also be done in the other.
Unlike Pencil Code, Code4all prevents learners from moving between the two modali-
ties. Instead, learners either use the block-based interface or the text-based interface.
Thus, for the duration of this study, learners were introduced to programming using
either a text-based version of Code4all (see Fig. 3b) or a block-based version of Code-
4all (see Fig. 3c). This means learners in the BPM class programmed via the drag-and-
drop mechanism supported by the block-based interface, while the TPM class authored
programs by typing in commands character-by-character. Aside from the programming
modality, everything else about the two versions of the programming environment is
identical, including the programming language (including keywords and syntax), the
visual execution environment, and the programming capabilities and other environmen-
tal scaffolds. For both versions of Code4all, the underlying programming language was

Fig. 3 The Code4all programming platform and two programming interfaces used in this study

 D. Sun et al.

1 3

CoffeeScript. CoffeeScript was chosen because it is syntactically light and has an active
professional user base (Weintrop & Wilensky, 2019).

Data collection

To capture learners’ programming learning performance, we collected multi-modal data,
including platform logs, students’ CT skills, and attitudinal data (see Table 1). Secondly,
we collected data about learners’ CT skills before and after the intervention, and learners in
TPM and BPM took the same test. The test instrument for CT skills was adapted from the
CT scale (CTS) developed by Korkmaz et al. (2017). This 5-point Likert scale contains five
factors (creativity, algorithm thinking, cooperativity, critical thinking and problem solving)
and 22 test items (see Table 1). Notably, the CTS was validated and applied among Chi-
nese K-12 learners by Bai and Gu (2019).

Thirdly, we collected learners’ self-reported pre- and post-survey about their attitudinal
changes (see Table 2) during the study, and the survey was comprised of 10-point Likert
scale questions. The contents in the pre- and post-surveys were largely the same except
for the item related to changes in tense (past/future). The survey was based on items from
the Attitudinal Survey that have been validated and widely used in computing education
research studies (Weintrop & Wilensky, 2019).

Data analysis

We used multiple analytical approaches, such as statistical and clustering analysis, to examine
the impact of learners’ programming learning quality between TPM and BPM (see Table 3).

Firstly, according to extracted variables and previous studies (Pereira et al., 2020), this
study identified five programming behaviors: Average number of code-changes (AnC),
Number of Irrelevant behaviors (NoIB), Number of debugs (NoD), Average time between
two debugs (AtD), and Number of errors (NoE) (see Table 4). It should be noted that,
despite the learner’s coding in different programming modalities, the codes recorded by the
Code4all platform were in a text-based format. Descriptive statistics were used to provide
an overall view of distribution of programming behaviors between TPM and BPM.

Additionally, clustering algorithms can reveal hidden patterns in complex datasets. In
many prior studies (Dutt et al., 2015; Shi & Cristea, 2018; Shi et al., 2019), unsupervised
learning methods were used to analyze novel relationships of educational variables. As
learners’ behaviors were heterogeneous, we clustered them based on their logs and exam-
ined patterns of their programming behaviors within each student cluster. To accomplish
this, we utilized the widely-used k-means algorithm (MacQueen, 1967), determine optimal
number of clusters, select variables, standardize data and randomly select initial cluster
centers. Assign each point to the closest center, calculate new centers, and repeat until con-
vergence. Evaluate results and interpret cluster characteristics based on research question
and hypotheses. This method is effective for identifying cluster centroids and analyzing the
distance between each pair of clusters, which enabled us to use the mean silhouette coeffi-
cient (Rousseeuw, 1987) for selecting the most appropriate number of clusters for our data.
RapidMiner and Python language were used to conduct clustering analysis.

Secondly, we conducted a T-test to examine the difference in CT skills between the TPM
and BPM groups. Furthermore, we utilized Analysis of Variance (ANOVA) to explore the
difference in learners’ CT skills among different clusters.

Block‑based versus text‑based programming: a comparison of…

1 3

Ta
bl

e
1

 S
am

pl
e

ite
m

s i
n

sc
al

e
of

 C
T

sk
ill

s

C
TS

N
Tw

o
ite

m
s o

f t
he

 sc
al

e

C
re

at
iv

ity
4

I h
av

e
a

be
lie

f t
ha

t I
 c

an
 so

lv
e

th
e

pr
ob

le
m

s p
os

si
bl

e
to

 o
cc

ur
 w

he
n

I e
nc

ou
nt

er
 a

 n
ew

 si
tu

at
io

n
I t

ru
st

m
y

in
tu

iti
on

s a
nd

 fe
el

in
gs

 o
f “

tru
en

es
s”

 a
nd

 “
w

ro
ng

ne
ss

”
w

he
n

I a
pp

ro
ac

h
th

e
so

lu
tio

n
to

 a
 p

ro
bl

em
A

lg
or

ith
m

 th
in

ki
ng

4
I c

an
 im

m
ed

ia
te

ly
 e

st
ab

lis
h

th
e

eq
ui

ty
 th

at
 w

ill
 g

iv
e

th
e

so
lu

tio
n

to
 a

 p
ro

bl
em

I c
an

 m
at

he
m

at
ic

al
ly

 e
xp

re
ss

 th
e

so
lu

tio
ns

 w
ay

s o
f t

he
 p

ro
bl

em
s I

 fa
ce

 in
 d

ai
ly

 li
fe

C
oo

pe
ra

tiv
ity

4
In

 c
oo

pe
ra

tiv
e

le
ar

ni
ng

, I
 th

in
k

th
at

 I
at

ta
in

/w
ill

 a
tta

in
 m

or
e

su
cc

es
sf

ul
 re

su
lts

 b
ec

au
se

 I
am

 w
or

ki
ng

 in
 a

gr

ou
p

I l
ik

e
so

lv
in

g
pr

ob
le

m
s r

el
at

ed
 to

 a
 g

ro
up

 p
ro

je
ct

 to
ge

th
er

 w
ith

 m
y

fr
ie

nd
s i

n
co

op
er

at
iv

e
le

ar
ni

ng
C

rit
ic

al
 th

in
ki

ng
4

I a
m

 g
oo

d
at

 p
re

pa
rin

g
re

gu
la

r p
la

ns
 re

ga
rd

in
g

th
e

so
lu

tio
n

of
 c

om
pl

ex
 p

ro
bl

em
s

I a
m

 w
ill

in
g

to
 le

ar
n

ch
al

le
ng

in
g

th
in

gs
Pr

ob
le

m
 so

lv
in

g
6

I h
av

e
pr

ob
le

m
s i

n
de

m
on

str
at

in
g

th
e

so
lu

tio
n

to
 a

 p
ro

bl
em

 in
 m

y
m

in
d

I c
an

no
t p

ro
du

ce
 so

 m
an

y
op

tio
ns

 w
hi

le
 th

in
ki

ng
 o

f t
he

 w
ay

s o
f t

he
 p

os
si

bl
e

so
lu

tio
n

to
 a

 p
ro

bl
em

 D. Sun et al.

1 3

Thirdly, since the samples were independent and the underlying data is ordinal and non-
parametric (Fay & Proschan, 2010), we performed a Wilcoxon Rank Sum test (reported as
a U statistic) to compare the two modalities. Additionally, we used Analysis of Variance
(ANOVA) to investigate the difference in learners’ attitudes toward programming among
different clusters. Taken together, mixed methods were used to examine learners’ program-
ming behaviors, CT skills, and attitudes toward programming from the summative and pro-
cess-oriented perspectives.

Additionally, to control for the increased likelihood of making a Type I error when con-
ducting multiple tests, we adjusted the significance level (alpha level) for each test using
the Bonferroni correction, which divides the overall alpha level of 0.05 by the number of
tests conducted (Emerson, 2020).

Table 2 Items in the survey of attitudes toward programming

Attitude N Items

Enjoyment of programming 3 Programming is Fun
I like programming
I am excited about this course

Confidence in programming ability 2 I am good at programming
I will perform/performed well in this course

Interest in future CS 2 I will find a job related to programming in the future
I will take more programming courses after this course

Table 3 Research analytical framework

Data source Analytical method Research question

Code4all log files Descriptive statistics/Clustering analysis (CA) RQ 1
CT skills scale T-test/ANOVA with Bonferroni correction RQ 2
Attitudinal Survey Descriptive statistics/Wilcoxon Rank- Sum test/ANOVA

with Bonferroni correction
RQ 3

Table 4 Definition of different behaviors during programming

Behavior Definition

Average number of code-changes (AnC) The average number of line changes within the code between two
clicks on debug button

Number of irrelevant behaviors (NoIB) Irrelevant behaviors refer to actions or behaviors that do not
contribute to the completion of the programming task, such as
browsing the internet, talking with classmates about non-task-
related topics, or working on unrelated assignments

Number of debugs (NoD) The number of clicks on debug button made by a student
Average time between two debugs (AtD) The average time spent between two clicks on debug button
Number of errors (NoE) The number of debugging that have errors (i.e., syntactical

errors)

Block‑based versus text‑based programming: a comparison of…

1 3

Results

Learners’ programming behaviors in two modalities

To answer RQ 1 (What were the differences in learners’ behaviors in learning via TPM
versus BPM?), learners’ total programming behaviors in two modalities were summarized
(see Table 5).

The results showed that some obvious differences in learners’ programming behaviors
between the two modalities. In particular, learners in TPM encountered more errors (NoE:
M = 8.81, SD = 20.17) than those in BPM (NoE: M = 4.97, SD = 5.31). Learners’ average
time spent between two clicks of debug button in TPM (AtD: M = 84.74, SD = 83.35) was
almost twice as long as that in BPM (AtD: M = 46.97, SD = 32.19). In addition, learners’
average amount of code changing in BPM (AnC: M = 25.80, SD = 15.93) was slightly
higher than that in TPM (AnC: M = 24.81, SD = 39.33). The number of clicks on debug
button made by learners in BPM (NoD: M = 37.73, SD = 20.25) was higher than that in
TPM (NoD: M = 32.03, SD = 43.06). Learners in BPM (NoIB: M = 35.20, SD = 24.06) had
more irrelevant behaviors than those in TPM (NoIB: M = 25.53, SD = 17.26).

To further explore the differences in programming behaviors between the two modal-
ities, learners’ programming behaviors were modeled by using the features presented in
Table 5. Previous studies found that it was possible to draw patterns using fine-grained data
from one programming course (Estey & Coady, 2016; Munson & Zitovsky, 2018; Pereira
et al., 2019). We inspected the k-means clusters, and the convergence of k-means was
achieved in the 10th iteration with k = 5 as the best value with the highest value of mean
silhouette coefficient (0.57). 23.44% of the learners were assigned to Cluster 1, 20.31% to
Cluster 2, 3.12% to Cluster 3, 6.25% to Cluster 4 and 46.88% to Cluster 5 (see Table 6).
Figure 4 depicts the programming profile of learners for each cluster in two modalities.

Comparing the features among five clusters, Cluster 1 was identified as the Code
Changer, they had the second highest frequency of code changing (AnC: M = 44.53,
SD = 10.69) and the number of clicks on debugs (NoD: M = 60.73, SD = 11.28), the sec-
ond lowest number of irrelevant behaviors (NoIB: M = 23.73, SD = 12.09), and the mod-
erate frequency of the number of errors (NoE: M = 10.67, SD = 7.89) amongst the five
clusters. Based on the clustering analysis, we found that five students from TPM and ten
students from BPM were assigned to this cluster. Cluster 2 was identified as the Minimal
Debugger where students had the longest time interval between two clicks of debug (AtD:
M = 174.43, SD = 72.95), and the lowest frequency of code changing (AnC: M = 4.00,
SD = 2.45), number of clicks on debugs (NoD: M = 7.69, SD = 3.73), and the number of
errors (NoE: M = 0.38, SD = 0.62). According to the cluster analysis results, it was deter-
mined that this particular cluster comprised ten students from TPM and three students
from BPM. Two learners from TPM were clustered into Cluster 3 which was identified

Table 5 Mean and standard deviation of the programming behaviors for TPM and BPM

TPM text-based modality, BPM block-based modality, AnC average number of code-changes, NoIB number
of irrelevant behaviors, NoD number of debugs, AtD average time between two debugs, NoE number of
errors

M N AnC NoIB NoD AtD NoE

TPM 32 24.81 (39.33) 25.53 (17.26) 32.03 (43.06) 84.74 (83.35) 8.81 (20.17)
BPM 32 25.80 (15.93) 35.20 (24.06) 37.73 (20.25) 46.97 (32.19) 4.97 (5.31)

 D. Sun et al.

1 3

as the Maximal Debugger. Here, they had the highest frequency in code changing (AnC:
M = 162.00, SD = 35.00) and the numbers of debugs (NoD: M = 179.50, SD = 40.50), and
they encountered the highest number of errors (NoE: M = 82.00, SD = 14.00), and had the
lowest frequency in irrelevant behaviors (NoIB: M = 14.78, SD = 10.78) among five clus-
ters. Cluster 4, which was identified as the Distracted Coder, had the highest frequency
of irrelevant behaviors (NoIB: M = 84.25, SD = 11.09), the second lowest frequency of
the number of debugs (NoD: M = 10.00, SD = 11.47), and the moderate behavior of the
number of errors (NoE: M = 11.75, SD = 3.47). This cluster consisted of two students from

Table 6 Mean and standard deviation of the features for clusters in two modalities

The table shows the average value of each behavior

Clu Mod N AnC NoIB NoD AtD NoE

1 Total 15 44.53 (10.69) 23.73 (12.09) 60.73 (11.28) 26.04 (7.42) 10.67 (7.89)
TPM 5 44.20 (10.11) 18.13 (10.11) 56.40 (9.58) 23.92 (9.58) 13.40 (9.58)
BPM 10 44.70 (10.97) 26.53 (12.02) 62.90 (11.86) 27.09 (5.77) 9.30 (6.47)

2 Total 13 4.00 (2.45) 27.00 (13.49) 7.69 (3.73) 174.43 (72.95) 0.38 (0.62)
TPM 10 3.00 (1.73) 25.69 (15.05) 6.10 (2.55) 186.05 (79.30) 0.30 (0.46)
BPM 3 7.33 (1.25) 31.36 (3.09) 13.00 (1.41) 135.70 (12.18) 0.67 (0.94)

3 Total (TPM) 2 162.00 (35.00) 14.78 (10.78) 179.50 (40.50) 5.91 (2.23) 82.00 (14.00)
4 Total 4 11.39 (10.53) 84.25 (11.09) 10.00 (11.47) 15.11 (14.32) 11.75 (3.74)

TPM 2 12.26 (0.42) 49.00 (0.77) 3.00 (0.17) 3.00 (0.48) 19.00 (0.82)
BPM 2 13.50 (12.50) 119.50 (0.50) 17.00 (14.00) 27.23 (12.23) 4.50 (4.50)

5 Total 30 17.44 (7.60) 28.13 (10.06) 26.11 (8.98) 46.49 (16.96) 3.23 (3.12)
TPM 14 15.07 (6.78) 24.57 (8.66) 21.71 (7.53) 47.90 (19.21) 3.21 (3.30)
BPM 16 19.39 (7.70) 31.06 (10.18) 29.73 (8.44) 45.32 (14.75) 3.24 (29.60)

Fig. 4 Programming profile of learners for each cluster in two modalities. TPM Text-based modality, BPM
Block-based modality, AnC Average number of code-changes, NoIB Number of irrelevant behaviors, NoD
Number of debugs, AtD Average time between two debugs, NoE Number of errors

Block‑based versus text‑based programming: a comparison of…

1 3

TPM and two students from BPM. Cluster 5, which was identified as the Average Coder,
had the average frequency of code changing, number of debugs, number of errors, irrele-
vant behaviors, and the time interval between two clicks of debugs among the five clusters.

Learners’ CT skills in two modalities

As to RQ 2 (What were the differences in learners’ CT skills in learning via TPM ver-
sus BPM?), regarding learners’ CT skills, there was no significant difference (creativ-
ity: p = 0.286; algorithm thinking: p = 0.185; cooperativity: p = 0.217; critical thinking:
p = 0.067; problem solving: p = 0.095; overall CT skill: p = 0.941) before the intervention.
The results revealed that, after the intervention, statistically significant differences were
identified for algorithm thinking (t = 3.23, p = 0.002), cooperativity (t = − 2.11, p = 0.038),
problem solving (t = − 2.72, p = 0.008) and overall CT skills (t = − 2.58, p = 0.012). In
terms of algorithm thinking, cooperativity, problem solving and overall CT skills, learners
in the BPM group outperformed those in the TPM group (see Table 7).

ANOVA analysis with Bonferroni correction results indicated that in TPM (see
Table 8), Maximal Debuggers (C3) performed significantly better than Code Changers
(C1) in the sub-items of problem-solving (F = 2.39; p = 0.004). However, in terms of
CT skills, no significant difference was found among students across the four clusters in
BPM, although Code Changers (C1) had the highest performance and Distracted Coders
(C3) had the lowest performance.

Learners’ attitudinal changes in two modalities

As to RQ 3 (What were the differences in learners’ perceived attitudes towards program-
ming in learning via TPM versus BPM?), the first attitudinal dimension sought to under-
stand if learners enjoyed programming and, if so, how it differed by modality during
the intervention time (see Fig. 5a). A Cronbach’s Alpha test was run on these questions
and found a sufficient level of correlation (Pre: α = 0.82, Post: α = 0.86), which met the

Table 7 Statistical summary of
learners’ CT skills in the two
modalities

*p < .05; **p < .01

CT Group M SD t p

Creativity TPM 3.83 0.83 − 1.65 0.103
BPM 4.16 0.60

Algorithm thinking TPM 3.57 0.87 − 3.23** 0.002
BPM 4.24 0.66

Cooperativity TPM 3.85 1.07 − 2.11* 0.038
BPM 4.35 0.68

Critical thinking TPM 3.78 0.94 − 1.05 0.296
BPM 4.00 0.66

Problem solving TPM 3.94 0.67 − 2.72** 0.008
BPM 4.39 0.63

Overall TPM 3.79 0.75 − 2.58* 0.012
BPM 4.23 0.53

 D. Sun et al.

1 3

0.70 thresholds often cited as the minimum level of acceptability for research purposes
(Streiner, 2003). Examining the changes in the pre-and post-test, shown in Fig. 5a, a slight
decrease was found in the two modalities. However, there was no statistically significant
differences emerging between time periods within the groups or at the same time period
across the modalities (Pre: U = 431.00, p = 0.274; Post: U = 456.50, p = 0.454). Such lack
of difference leads to the conclusion that modality does not affect perceived enjoyment in
novice learners, which also suggests that the increased enjoyment of programming found
in other studies using block-based tools (e.g., Wilson & Moffat, 2010) may have more to
do with the curriculum used or the context in which learners learn programming than the
modality itself.

Table 8 ANOVA results of learners’ CT skills in different clusters

We applied the Bonferroni correction to account for multiple comparisons and used an adjusted alpha level
of 0.005
**p < 0.01

Group CT C1 C2 C3 C4 C5 F
M (SD) M (SD) M (SD) M (SD) M (SD)

TPM Overall 3.44 (0.61) 3.61 (0.76) 4.59 (0.26) 4.39 (0.19) 3.71 (0.51) 1.43
Creativity 3.05 (0.68) 3.75 (0.75) 4.50 (0.25) 4.68 (0.07) 3.25 (0.92) 1.15
Algorithm

thinking
3.42 (0.75) 3.55 (0.70) 4.50 (0.50) 4.38 (0.37) 3.79 (0.89) 1.15

Cooperativity 3.55 (0.97) 3.60 (1.17) 4.00 (0.00) 4.28 (0.23) 4.00 (0.94) 1.05
Critical think-

ing
3.82 (0.85) 3.35 (0.95) 4.63 (0.38) 4.23 (0.02) 3.85 (0.86) 1.36

Problem solving 3.03 (0.58) 3.82 (0.68) 4.43 (0.67) 4.32 (0.25) 4.01 (0.48) 2.39** C3 > C1
BPM Overall 4.43 (0.46) 4.31 (0.28) – 4.11 (0.47) 4.12 (0.56) 1.04

Creativity 4.40 (0.58) 4.42 (0.31) – 4.00 (0.25) 4.01 (0.60) 1.61
Algorithm

thinking
4.43 (0.54) 4.00 (0.54) – 4.13 (0.63) 4.19 (0.70) 0.50

Cooperativity 4.45 (0.60) 4.83 (0.24) – 4.38 (0.63) 4.22 (0.73) 0.78
Critical think-

ing
4.28 (0.63) 3.83 (0.24) – 3.75 (0.50) 3.91 (0.69) 1.30

Problem solving 4.60 (0.54) 4.44 (0.42) – 4.42 (0.25) 4.25 (0.69) 0.64

Fig. 5 Scores of learners’ enjoyment (a), confidence (b) and interest (c) in programming at two points

Block‑based versus text‑based programming: a comparison of…

1 3

The second attitudinal dimension was learners’ perceived confidence in their program-
ming ability. The confidence questions had Cronbach’s α scores of 0.85 on the pre-survey
and 0.80 on the post-survey. Looking at the two distinct points at which the survey was
administered (see Fig. 5b), we found a significant difference in confidence between the
modalities in the pre-survey, while no significant difference was found in the post-survey
(Pre: U = 333.00, p = 0.016; Post: U = 461.50, p = 0.494). Despite a significant difference
between the conditions at the outset of the study, the difference did not appear in post
administrations of the survey. This is echoed by Weintrop and Wilensky (2019) that pro-
gramming modality alone does not seem to affect students’ confidence in their program-
ming ability.

The third attitudinal dimension was learners’ interest in pursuing future computer sci-
ence learning opportunities. A Cronbach’s Alpha test was run on these questions and found
a sufficient level of correlation (Pre: α = 0.75, Post: α = 0.70). Regarding learners’ interest
in future computer science courses (see Fig. 5c), the study found that learners in the two
modalities started with different points (not significant) and went in different directions.
BPM class showed an increasing trend, while TPM revealed a slightly decreasing trend in
the post-survey. Besides, the study found no significant difference in confidence between
the modalities (Pre: U = 462.00, p = 0.501; Post: U = 421.00, p = 0.220). This pattern
matches the findings of researchers identifying the difficulty in text-based programming
learning, such as higher demand for reserved knowledge and a higher possibility of gram-
matical errors (Armoni et al., 2015). Overall, the study’s instructional treatments witnessed
BPM participants becoming more interested in computer science courses, while learners in
TPM became less interested.

ANOVA analysis with Bonferroni correction results revealed that, in terms of learn-
ers’ attitudes toward programming in different clusters, the homogeneity of variances
assumption was checked before the formal analysis and confirmed through Levene’s tests
for equality of variances (enjoyment (F = 0.009; p = 0.927 > 0.05); confidence (F = 0.448;
p = 0.506 > 0.05); interest (F = 0.059; p = 0.0.809 > 0.05). Table 9 revealed that, in TPM,
it was found that in the confidence aspect, Cluster 3 significantly outperformed Cluster 1
(F = 2.53, p = 0.004). In BPM, Cluster 2 scored significantly higher than Cluster 5 in inter-
est level (F = 1.96, p = 0.001).

Table 9 ANOVA results of learners’ attitudes toward programming in different clusters

We applied the Bonferroni correction to account for multiple comparisons and used an adjusted alpha level
of 0.005
*p < 0.01

Group CT C1 C2 C3 C4 C5 F

M SD M SD M SD M SD M SD

TPM Enjoyment 6.33 2.34 7.20 2.16 9.34 0.67 9.50 0.50 7.13 1.39 1.67
Confidence 4.60 1.33 7.30 2.03 8.75 1.25 8.50 0.50 6.07 1.29 2.53** C3 > C1
Interest 6.72 1.50 5.90 1.93 9.00 1.00 6.50 0.50 5.62 1.51 2.23

BPM Enjoyment 7.73 1.89 8.22 1.85 – 8.00 1.67 7.29 1.87 0.21
Confidence 7.25 2.05 8.33 1.70 – 6.75 0.75 7.09 1.54 0.40
Interest 7.23 1.33 8.82 1.34 – 7.33 2.00 5.28 1.93 1.96** C2 > C5

 D. Sun et al.

1 3

Discussion

Addressing research questions

With the more pervasive development of computer programming education, there is
increasing research on how learning occurs under the two typical programming modalities
(BPM and TPM). This study collected multi-modal data to analyze students’ programming
behaviors, CT skills, and attitudes toward programming in two programming modalities.
Learners’ CT skills under two modalities were compared through pre- and post-test, and
changes in learners’ attitudes toward programming under two modalities were also ana-
lyzed through pre- and post-surveys.

For research question 1, this research revealed that learners in TPM tended to spend
more time between two clicks of debug button and encountered more syntactical errors.
Students in BPM spent more time on code changing (operating blocks and adjusting
parameters), made more attempts at debugging, and had more irrelevant behaviors. The
research revealed five clusters based on students’ programming behaviors, including Code
Changer (C1), Minimal Debugger (C2), Maximal Debugger (C3), Distracted Coder (C4),
and Average Coder (C5).

For research question 2, the results of comparing students’ CT skills in the two modali-
ties from the post-test found that learners in BPM outperformed those in the TPM group in
terms of their algorithm thinking, cooperativity, and overall CT skills. One possible expla-
nation is that block-based programming environments provide learners with a more intui-
tive and concrete way of coding, where they can drag and drop blocks to create programs
instead of writing lines of text. This approach can help learners better understand funda-
mental programming concepts, such as sequencing, conditionals, loops, and variables, and
develop their algorithmic thinking (Grover, 2021; Mladenović et al., 2018). Furthermore,
BPM supports the iterative development of programs, enabling learners to see immedi-
ate results as they build their code. BPM also includes tools to promote cooperativity and
collaboration, including the sharing of code resources, co-programming, and peer review
sessions, which can enhance communication, cooperation, and social skills, all of which
are essential components of CT (Grover & Basu, 2017; Jiang et al., 2021; Maloney et al.,
2008).

Additionally, in TPM, frequent coding and debugging is associated with higher prob-
lem-solving performance, likely due to the expressive nature of languages like Python and
their flexibility in designing tailored solutions (Kölling et al., 2015). Conversely, block-
based programming languages, such as Scratch or Blockly, rely on pre-built code blocks
and may limit the complexity and abstraction that can be achieved (Weintrop & Wilensky,
2019). Active coding and debugging is crucial for developing programming concepts and
problem-solving skills, students can develop a deeper understanding of programming con-
cepts and become more proficient at identifying and resolving problems. This skill is likely
more effectively developed in text-based programming than block-based programming, as
it requires students to work on their own code, rather than simply dragging and dropping
pre-built blocks (Weintrop & Wilensky, 2015).

For research question 3, in terms of learners’ attitudinal changes toward programming
between pre- and post-test, learners in TPM showed a slight decrease in enjoyment, con-
fidence, and interest in future CS. Learners in BPM showed an increase in interest, while
they had a decrease in enjoyment and confidence for programming. One possible reason
is the scaffolding approach used in block-based programming. Scaffolding allows learners

Block‑based versus text‑based programming: a comparison of…

1 3

to easily complete tasks without getting bogged down by syntax errors or other technical
complications. As a result, learners may have been more motivated to engage in program-
ming and learned to appreciate the satisfaction of programming. However, the decrease in
enjoyment and confidence may reflect the limitations of block-based programming. Learn-
ers may perceive it as a less challenging, and thus less interesting, medium than text-based
programming (Grover & Basu, 2017).

Furthermore, the Maximal Debugger (C3) in text-based programming demonstrated
significantly higher confidence levels compared to the Code Changer (C1), indicating a
correlation between text-based programming and increased self-efficacy (Lin & Weintrop,
2021). Furthermore, the Minimal Debugger (C2) in block-based programming exhibited
significantly higher interest levels, potentially due to the immediate visual feedback and
error highlighting offered by block-based programming (Tempel, 2013). The Minimal
Debugger’s additional features, such as step-by-step debugging, is likely to contribute to a
positive learning experience in block-based programming.

Pedagogical implications

Firstly, instructors could consider integrating block-based programming into introductory
programming courses to improve novice learners’ CT skills. Programming can encourage
learners to observe time-varying phenomena, support certain types of causal explanations,
and segment the world into processes, which can help cultivate CT skills (Sherin, 2001).
Our study found that learners in BPM achieved a higher level of overall CT skills and sub-
items compared to those in TPM. This supports the effectiveness of BPM in facilitating
novice learners’ programming learning (Grover et al., 2015). In contrast, learners in TPM
experienced a slight decrease in overall CT skills and the five sub-items. This may be due
to the challenge of grammatical errors and the need for additional learning materials in the
text-based modality (Armoni et al., 2015; Mladenović et al., 2018; Price & Barnes, 2015),
as well as the time period of receiving instruction. Weintrop and Wilensky (2019) found
that students in the text-based programming condition achieved fewer gains in computer
science concepts during the introductory period but had incremental improvement in the
following 15-week study.

Secondly, instructors may adopt different strategies in TPM and BPM to promote the
learner’s engagement during the programming process. Our results showed that, with its
flexibility and convenience, the BPM led to fewer syntax mistakes and more debugging
and irrelevant behaviors from learners. In addition, learners in BPM experienced increased
interest in programming. Therefore, instructors should provide learners with more inter-
vention when noticing learners’ irrelevant behaviors in BPM. As for TPM, learners wrote
longer lines of code, had longer time intervals between two clicks of debugs and encoun-
tered more syntax errors. Eid and Millham (2012) suggested that TPM required learners to
spell and type in all the codes, which provided learners with a critical step for mastering a
new programming language. Hence, in TPM, instructors may encourage learners to have
more attempts in debugging and also provide learners with more scaffolding for error cor-
rection, such as an explanation list of some common debugging errors or a summary form
of the most frequent syntactical errors from earlier programming practices for each learner.

Thirdly, to improve student performance, instructors should consider students’ charac-
teristics and encourage them to engage in both coding and debugging activities, regardless
of the modality. Students who frequently engage in these activities tend to display higher
problem-solving skills and interest in programming. Through coding and debugging,

 D. Sun et al.

1 3

learners can deepen their understanding of programming concepts and become better prob-
lem solvers. Instructors can also assist students in identifying and resolving debugging
errors by providing debugging information and sharing common errors among students in
the class (Giannakos et al., 2013; Sun et al., 2021). By targeting debugging errors, instruc-
tors can help students become more proficient in debugging and improve their overall
performance.

Taken together, the findings of this study are consistent with earlier research demon-
strating that different representational forms have unique affordances that can affect learn-
ers’ conceptualization of the material (Sherin, 2001; Weintrop & Wilensky, 2017). While
programming instruction may vary by country and culture, and instructors may choose dif-
ferent modalities based on students’ grade levels, the results of this study provide valu-
able insights for designing programming instruction in secondary and post-secondary
education.

Conclusion and future directions

Identifying the fine-grained difference in programming modalities is crucial in promoting
computer programming education and cultivating computational literacy. This quasi-exper-
imental study in a secondary school compares learners’ behavior patterns, CT skills, and
attitudes toward programming in BPM and TPM, revealing differences between modali-
ties. However, this study has three limitations. Firstly, our study is limited by the specific
context in which it was conducted, as the sample used may not be representative of other
populations. These limitations emphasize the need for cautious interpretation and repli-
cation with larger, more diverse samples. Secondly, this study collected survey data and
actual behavioral data in an experimental study, future research could use performance-
based tests or observation to gain a deeper understanding of CT skills and consider mixed
methods with qualitative interviews to explore the learners’ experiences and how BMP
and TPM could complement each other. Thirdly, following the trend of multimodal learn-
ing analytics (Ochoa, 2017), this study collected multi-modal data from log files and sur-
vey data. Future research could consider collecting more diverse sources of data to reveal
learners’ behavioral, cognitive, metacognitive, and social activities during programming
learning.

Overall, it is critical to cultivate young learners’ CT to prepare them for future learn-
ing and jobs. In this context, this study that probes the differences in learning via block-
based versus text-based programming modalities contributes to understanding effective
approaches for implementing K-12 programming education and cultivating relevant CT
skills.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(NSFC) [grant number 62307011]; the National Natural Science Foundation of China (NSFC) [grant
number 61977057]; Guangdong Basic and Applied Basic Research Foundation, China [Grant No.
2021A1515110081]; Guangdong Planning Office of Philosophy and Social Science, China [Grant
No. GD22XJY12]; Shenzhen Science, Technology and Innovation Commission, China [Grant No.
20220810115236001].

Funding This work was funded by National Natural Science Foundation of China (Grant No. 62307011),
Dan Sun. National Natural Science Foundation of China (NSFC) (Grant No. 61977057), Yan Li. Guangdong
Basic and Applied Basic Research Foundation (Grant No. 2021A1515110081), Miaoting Cheng. Guang-
dong Planning Office of Philosophy and Social Science (Grant No. GD22XJY12), Miaoting Cheng. Science,

Block‑based versus text‑based programming: a comparison of…

1 3

Technology and Innovation Commission of Shenzhen Municipality (Grant No. 20220810115236001),
Miaoting Cheng.

Data availability The data can be made available upon request from the corresponding authors.

Declarations

Conflict of interest We declare that we have no financial and personal relationships with other people or or-
ganizations that can inappropriately influence our work, there is no professional or other personal interest of
any nature or kind in any product, service and/or company that could be construed as influencing the position
presented in, or the review of, the manuscript entitled.

Informed consent Informed consent was obtained from all individual participants included in the study.

Research involving human and animal rights All procedures performed in studies involving human partici-
pants were in accordance with the ethical standards of the institutional and/or national research committee.

References

Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach.
International Journal of Child-Computer Interaction, 19, 30–55. https:// doi. org/ 10. 1016/j. ijcci.
2018. 10. 004

Alshaigy, B., Kamal, S., Mitchell, F., Martin, C., & Aldea, A. (2015). Pilet: an interactive learning tool
to teach python. In Judith, G. E., Sue, S., & Jan, V. (Eds.), WiPSCE’15: Proceedings of the work-
shop in primary and secondary computing education (pp. 76–79). ACM.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 com-
putational thinking curriculum framework: Implications for teacher knowledge. Educational Tech-
nology & Society, 19(3), 47–57.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming. ACM
Transactions on Computing Education, 14(25), 1–15. https:// doi. org/ 10. 1145/ 26770 87

Bai, X. M., & Gu, X. Q. (2019). Research on the construction and application of the computational
thinking instrument in K12. China Educational Technology, 10, 83–90.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and
beyond. Communications of the ACM, 60, 72–80. https:// doi. org/ 10. 1145/ 30154 55

Bey, A., Pérez-Sanagustín, M., & Broisin, J. (2019). Unsupervised automatic detection of learners’ pro-
gramming behavior. In Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., & Schneider,
J. (Eds.), EC-TEL 2021: Proceedings of the European conference on technology enhanced learning
(pp. 69–82). Springer.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Arnetha, F. B., & Cynthia, A. T. (Eds.), AERA’ 12: Proceedings of the
2012 annual meeting of the American educational research association (pp. 1–25). AERA.

Dijkstra, E. (1982). How do we tell truths that might hurt? ACM SIGPLAN Notices, 17(5), 13–15.
https:// doi. org/ 10. 1145/ 947923. 947924

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic thinking, coop-
erativity, creativity, critical thinking, and problem solving: Exploring the relationship between
computational thinking skills and academic performance. Journal of Computers in Education, 4(4),
355–369. https:// doi. org/ 10. 1007/ s40692- 017- 0090-9

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should your 8-year-old learn coding? In Carsten, S., Michael,
E. C., & Judith, G. E. (Chairs), WiPSE’13: Proceedings of the 9th workshop in primary and secondary
computing education (pp.60–69). ACM.

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and
various variables with the structural equation model. Computers & Education, 116, 191–202. https://
doi. org/ 10. 1016/j. compe du. 2017. 09. 004

Dutt, A., Aghabozrgi, S., Ismail, M. A. B., & Mahroeian, H. (2015). Clustering algorithms applied in edu-
cational data mining. International Journal of Information and Electronics Engineering, 5(2), 112.
https:// doi. org/ 10. 7763/ IJIEE. 2015. V5. 513

https://doi.org/10.1016/j.ijcci.2018.10.004
https://doi.org/10.1016/j.ijcci.2018.10.004
https://doi.org/10.1145/2677087
https://doi.org/10.1145/3015455
https://doi.org/10.1145/947923.947924
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.7763/IJIEE.2015.V5.513

 D. Sun et al.

1 3

Eid, C., & Millham, R. (2012). Which introductory programming approach is most suitable for learners:
Procedural or visual programming. American Journal of Business Education, 5(2), 173–178. https://
doi. org/ 10. 19030/ ajbe. v5i2. 6819

Estey, A., & Coady, Y. (2016). Can interaction patterns with supplemental study tools predict outcomes
in CS1? In Alison, C., Ernesto, C. V. (Chairs), ITiCSE’16: Proceedings of the 2016 ACM conference
on innovation and technology in computer science education (pp. 236–241). ACM. https:// doi. org/ 10.
1145/ 28994 15. 28994 28

Falloon, G. (2016). An analysis of young learners’ thinking when completing basic coding tasks using
Scratch Jnr. on the iPad. Journal of Computer Assisted Learning, 32(6), 576–593. https:// doi. org/ 10.
1111/ jcal. 12155

Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-mann-whitney or t-test? On assumptions for hypothesis
tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39. https:// doi. org/ 10. 1214/
09- SS051

García, D., Harvey, B., & Barnes, T. (2015). The beauty and joy of computing. ACM Inroads, 6, 71–79.
https:// doi. org/ 10. 1145/ 28351 84

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in science education:
Exploring computational thinking through code analysis. Interactive Learning Environments, 26(3),
386–401. https:// doi. org/ 10. 1080/ 10494 820. 2017. 13370 36

Giannakos, M. N., Koilias, C., Vlamos, P., & Doukakis, S. (2013). Measuring students’ acceptance and
confidence in algorithms and programming: The impact of engagement with CS on greek secondary
education. Informatics in Education, 12(2), 207–219.

Grover, S. (2021). Teaching and assessing for transfer from block-to-text programming in middle school
computer science. In C. Hohensee & J. Lobato (Eds.), Transfer of learning. Research in mathematics
education. Springer.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming:
Examining misconceptions of loops, variables, and boolean logic. In Michael, E. C., & Stephen, H. E.
(Eds.), SIGCSE’17: Proceedings of the 2017 ACM SIGCSE technical symposium on computer science
education (pp. 267–272). ACM.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school learners. Computer Science Education, 25(2), 199–237. https:// doi. org/ 10.
1080/ 08993 408. 2015. 10331 42

HelloGitHub. (2023, July 24). Programming Language Rankings in June 2023. https:// hello github. com/
report/ tiobe/

Howland, K., & Good, J. (2014). Learning to communicate computationally with flip: a bi-modal program-
ming language for game creation. Computers & Education, 80, 224–240. https:// doi. org/ 10. 1016/j.
compe du. 2014. 08. 014

ISTE. (2015). CT leadership toolkit. Retrieved 2015, http:// www. iste. org/ docs/ ctdoc uments/ ct- leade rshipt-
toolk it. pdf? sfvrs n¼4.

Jiang, B., Zhao, W., Gu, X., & Yin, C. (2021). frame: a case study from scratch online community. Edu-
cational Technology Research and Development, 69(5), 2399–2421. https:// doi. org/ 10. 1007/
s11423- 021- 10021-8

Jocius, R., O’Byrne, W. I., Albert, J., Joshi, D., Robinson, R., & Andrews, A. (2021). Infusing computa-
tional thinking into STEM teaching: From professional development to classroom practice. Educa-
tional Technology & Society, 24(4), 166–179.

Katai, Z. (2015). The challenge of promoting algorithmic thinking of both sciences-and humanities-oriented
learners. Journal of Computer Assisted Learning, 31(4), 287–299. https:// doi. org/ 10. 1111/ jcal. 12070

Kölling, M., Brown, N., & Altadmri, A. (2015). Frame-based editing: Easing the transition from blocks to
text-based programming. In Judith, G. E., Sue, S., & Jan, V. (Eds.), WiPSCE ’15: Proceedings of the
workshop in primary and secondary computing education (pp. 29–38). ACM.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational think-
ing scales (CTS). Computers in Human Behavior, 72, 558–569.

Lin, Y., & Weintrop, D. (2021). The landscape of Block-based programming: Characteristics of block-
based environments and how they support the transition to text-based programming. Journal of
Computer Languages, 67, 101075. https:// doi. org/ 10. 1016/j. cola. 2021. 101075

Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T. W., & Liu, J. (2021). Promoting pupils’ com-
putational thinking skills and self-efficacy: A problem-solving instructional approach. Edu-
cational Technology Research and Development, 69(3), 1599–1616. https:// doi. org/ 10. 1007/
s11423- 021- 10016-5

https://doi.org/10.19030/ajbe.v5i2.6819
https://doi.org/10.19030/ajbe.v5i2.6819
https://doi.org/10.1145/2899415.2899428
https://doi.org/10.1145/2899415.2899428
https://doi.org/10.1111/jcal.12155
https://doi.org/10.1111/jcal.12155
https://doi.org/10.1214/09-SS051
https://doi.org/10.1214/09-SS051
https://doi.org/10.1145/2835184
https://doi.org/10.1080/10494820.2017.1337036
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://hellogithub.com/report/tiobe/
https://hellogithub.com/report/tiobe/
https://doi.org/10.1016/j.compedu.2014.08.014
https://doi.org/10.1016/j.compedu.2014.08.014
http://www.iste.org/docs/ctdocuments/ct-leadershipt-toolkit.pdf?sfvrsn¼4
http://www.iste.org/docs/ctdocuments/ct-leadershipt-toolkit.pdf?sfvrsn¼4
https://doi.org/10.1007/s11423-021-10021-8
https://doi.org/10.1007/s11423-021-10021-8
https://doi.org/10.1111/jcal.12070
https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1007/s11423-021-10016-5
https://doi.org/10.1007/s11423-021-10016-5

Block‑based versus text‑based programming: a comparison of…

1 3

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In
Lucien, M. L. C., & Jerzy, N. (Eds.), Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability (pp. 281–297). Berkeley.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: Urban
youth learning programming with scratch. SIGCSE Bulletin, 40(1), 367–371. https:// doi. org/ 10.
1145/ 13523 22. 13522 60

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., et al. (2014). Computational
thinking in K-9 education. Proceedings of the working group reports of the 2014 on innovation & tech-
nology in computer science education conference, ITiCSE-WGR 2014 (1–29). ACM.

Ministry of Education. (2017). General high school information technology curriculum standard (2017
Edition). Ministry of Education of the People’s Republic of China website. http:// www. moe. gov. cn/
jyb_ xxgk/ xxgk_ jyta/ jyta_ kjs/ 20200 2/. html

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions in block-based and
text-based programming languages at the K-12 level. Education and Information Technologies,
23(4), 1483–1500. https:// doi. org/ 10. 1007/ s10639- 017- 9673-3

Munson, J. P., & Zitovsky, J. P. (2018). Models for early identification of struggling novice programmers. In
Tiffany, B., & Daniel, G. (Chairs), SIGCSE’18: Proceedings of the 49th ACM technical symposium on
computer science education (pp. 699–704). ACM. https:// doi. org/ 10. 1145/ 31594 50. 31594 76

Nolan, K., & Bergin, S. (2016). The role of anxiety when learning to program: A systematic review of
the literature. In Judy, S., & Calkin, S. M. (Eds.), Koli Calling’16: Proceedings of the 16th koli
calling international conference on computing education research (pp. 61–70). ACM.

Noone, M., & Mooney, A. (2018). Visual and textual programming languages: A systematic review
of the literature. Journal of Computers in Education, 5(2), 149–174. https:// doi. org/ 10. 1007/
s40692- 018- 0101-5

Ochoa, X. (2017). Chapter 11: multimodal learning analytics. In C. Lang, G. Siemens, A. Wise, & D.
Gašević (Eds.), Handbook of learning analytics (1st ed., pp. 143–150). Creative Commons License.

Pellas, N., & Vosinakis, S. (2018). The effect of simulation games on learning computer programming:
A comparative study on high school students’ learning performance by assessing computational
problem-solving strategies. Education and Information Technologies, 23(6), 2423–2452. https://
doi. org/ 10. 1007/ s1063 9018- 9724-4

Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A., & Alshehri,
M. (2019). Early dropout prediction for programming courses supported by online judges. In I.
Seiji, M. A. O. Eva, H. Peter, M. Bruce, & L. Rose (Eds.), Artificial intelligence in education (pp.
67–72). Springer. https:// doi. org/ 10. 1007/ 978-3- 030- 23207-8_ 13

Pereira, F. D., Oliveira, E. H. T., Oliveira, D. B. F., Cristea, A. I., Carvalho, L. S. G., Fonseca, S. C.,
Toda, A., & Isotani, S. (2020). Using learning analytics in the Amazonas: Understanding students’
behaviour in introductory programming. British Journal of Educational Technology, 51(4), 955–
972. https:// doi. org/ 10. 1111/ bjet. 12953

Price, T.W., & Barnes, T. (2015) Comparing textual and block interfaces in a novice programming envi-
ronment. In Brian, D. (Eds.), ICER’15: Proceedings of the eleventh annual international confer-
ence on international computing education research (pp.91–99). ACM.

Riley, D. D., & Hunt, K. A. (2014). Computational thinking for the modern problem Solver. CRC Press.
Rojas-López, A., & García-Peñalvo, F. J. (2018). Learning scenarios for the subject methodology of pro-

gramming from evaluating the computational thinking of new students. Revista Iberoamericana De
Tecnologias Del Aprendizaje, 13(1), 30–36. https:// doi. org/ 10. 1109/ RITA. 2018. 28099 41

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the computational thinking test. Computers
in Human Behavior, 72, 678–691. https:// doi. org/ 10. 1016/j. chb. 2016. 08. 047

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analy-
sis. Journal of Computational and Applied Mathematics, 20, 53–65.

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A meta-analysis of teaching and learning com-
puter programming: Effective instructional approaches and conditions. Computers in Human
Behavior, 109, 106349. https:// doi. org/ 10. 1016/j. MoB. 2020. 106349

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as expressive
languages for physics. International Journal of Computers for Mathematical Learning, 6(1), 1–61.
https:// doi. org/ 10. 1023/A: 10114 34026 437

Shi, L., & Cristea, A. I. (2018). In-depth exploration of engagement patterns in MOOCs. In Hakim, H.,
Wojciech, C., Hua, M., Hye-Young, P., & Rui, Zhou. (Eds.), ICWE 2019: Proceedings of the 19th
international conference on web information systems engineering (pp. 395–409). Springer.

https://doi.org/10.1145/1352322.1352260
https://doi.org/10.1145/1352322.1352260
http://www.moe.gov.cn/jyb_xxgk/xxgk_jyta/jyta_kjs/202002/.html
http://www.moe.gov.cn/jyb_xxgk/xxgk_jyta/jyta_kjs/202002/.html
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1145/3159450.3159476
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/s10639018-9724-4
https://doi.org/10.1007/s10639018-9724-4
https://doi.org/10.1007/978-3-030-23207-8_13
https://doi.org/10.1111/bjet.12953
https://doi.org/10.1109/RITA.2018.2809941
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.MoB.2020.106349
https://doi.org/10.1023/A:1011434026437

 D. Sun et al.

1 3

Shi, L., Cristea, A. I., Toda, A. M., & Oliveira, W. (2019). Revealing the hidden patterns: A comparative
study on profiling subpopulations of MOOC learners. In Siarheyeva. A., Barry. C., Lang, M., Lin-
ger, H., & Schneider, C. (Eds.), Proceedings of the 28th international conference on information
systems development. Springer.

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient Alpha and internal con-
sistency. Journal of Personality Assessment, 80, 99–103. https:// doi. org/ 10. 1207/ S1532 7752J
PA8001_ 18

Sun, D., Ouyang, F., Li, Y., & Chen, H. (2021). Three contrasting pairs’ collaborative programming
processes in China’s secondary education. Journal of Educational Computing Research, 1(8), 54.

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school learners’ views, atti-
tudes, and intentions regarding CS. ACM Transactions on Computing Education, 12(2), 1–29.
https:// doi. org/ 10. 1145/ 21605 47. 21605 51

Tempel, M. (2013). Blocks programming. CSTA Voice.
TIOBE. (2023). TIOBE Index for August 2023. https:// www. tiobe. com/ tiobe- index/
Tsai, M. J., Liang, J. C., & Hsu, C.-Y. (2021). The computational thinking scale for computer literacy

education. Journal of Educational Computing Research, 59(4), 579–602. https:// doi. org/ 10. 1177/
07356 33120 972356

Weintrop, D. (2015). Comparing text-based, blocks-based, and hybrid blocks/text programming tools.
Brian, D. (Ed.), Proceedings of the eleventh annual international conference on international com-
puting education research (pp. 283–284). ACM.

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: Learners’ percep-
tions of blocks-based programming. In Marina, U. B., & Glenda, R. (Eds.), Proceedings of the 14th
international conference on interaction design and children (pp. 199–208). ACM.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high
school computer science classrooms. ACM Transactions on Computing Education, 18(1), 1–25.
https:// doi. org/ 10. 1145/ 30897 99

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based envi-
ronments to professional programming languages in high school computer science classrooms.
Computers & Education, 142(103646), 1–17. https:// doi. org/ 10. 1016/j. compe du. 2019. 103646

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to program-
ming. SCRATCHED website. https:// scrat ched. gse. harva rd. edu/ resou rces/ evalu ating- scrat ch- intro
duce- young er- schoo lchil dren- progr amming. html

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical Transactions of
the Royal Society A, 366, 3717–3725. https:// doi. org/ 10. 1098/ rsta. 2008. 0118

Wing, J. (2011). Computational thinking—what and why? Carnegie Mellon.
Wing, J. (2014). Computational thinking benefits society. Social issues in computing website. http://

socia lissu es. cs. toron to. edu/ index. html% 3Fp= 279. html.
Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative pro-

gramming: A quantitative ethnography approach. Journal of Computer Assisted Learning, 35(3),
421–434. https:// doi. org/ 10. 1111/ jcal. 12348

Yucer, Y., & Rizvanoglu, K. (2019). Battling gender stereotypes: A user study of a code-learning game,
“Code combat”, with middle school children. Computers in Human Behavior, 99, 352–365. https://
doi. org/ 10. 1016/j. MoB. 2019. 05. 029

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Dan Sun is currently an assistant professor in Jing Hengyi School of Education, Chinese Education Mod-
ernization Research Institute of Hangzhou Normal University. Her research interests include AI in educa-
tion, programming education, learning analytics, and computational thinking.

Chee‑Kit Looi is currently Research Chair Professor of Learning Sciences in the Education University of
Hong Kong, and Emeritus Professor of National Institute of Education, Nanyang Technological University.

https://doi.org/10.1207/S15327752JPA8001_18
https://doi.org/10.1207/S15327752JPA8001_18
https://doi.org/10.1145/2160547.2160551
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1177/0735633120972356
https://doi.org/10.1177/0735633120972356
https://doi.org/10.1145/3089799
https://doi.org/10.1016/j.compedu.2019.103646
https://scratched.gse.harvard.edu/resources/evaluating-scratch-introduce-younger-schoolchildren-programming.html
https://scratched.gse.harvard.edu/resources/evaluating-scratch-introduce-younger-schoolchildren-programming.html
https://doi.org/10.1098/rsta.2008.0118
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1016/j.MoB.2019.05.029
https://doi.org/10.1016/j.MoB.2019.05.029

Block‑based versus text‑based programming: a comparison of…

1 3

His research focuses on learning sciences, computer-supported collaborative learning, mobile learning, AI
in education, and computational thinking.

Yan Li is currently a professor at Zhejiang University, China, where she is also the director of the Research
Center for AI in Education and the Director of the Department of Curriculum and Learning Sciences, Zhe-
jiang University. Her research interests include distance education, ICT education, media education, AI in
education, diffusion of educational innovations, etc.

Chengcong Zhu is currently an information technology teacher of Xiaoshan High School. His research
interests include programming education, and artificial intelligence in education.

Caifeng Zhu is currently an information technology teacher at Hangzhou Chu Kochen Honors School. Her
research interests include youth programming, and artificial intelligence in education.

Miaoting Cheng is an assistant professor in the Faculty of Education, Shenzhen University. Her research
focuses on the social, cultural and psychological use of ICT, AI education, programming education, and
technology acceptance. She has authored many publications in the aforementioned areas.

Authors and Affiliations

Dan Sun1 · Chee‑Kit Looi2 · Yan Li3 · Chengcong Zhu4 · Caifeng Zhu5 ·
Miaoting Cheng6

 * Yan Li
 yanli@zju.edu.cn

1 Jing Hengyi School of Education, Chinese Education Modernization Research Institute
of Hangzhou Normal University, Yu Hang Tang Rd. #2318, Hangzhou 310058, Zhejiang, China

2 Department of Curriculum and Instruction, Education University of Hong Kong, New Territories,
10 Lo Ping Rd, Hong Kong SAR, China

3 College of Education, Zhejiang University, Yu Hang Tang Rd. #866, Hangzhou 310058, Zhejiang,
China

4 Xiaoshan High School, Gongxiu Rd. #538, Hangzhou 311201, Zhejiang, China
5 Hangzhou Chu Kochen Honors School, Xi Pu Rd. #118, Hangzhou 310053, Zhejiang, China
6 Faculty of Education, Shenzhen University, Nanhai Rd. #3688, Shenzhen 518060, Guangdong,

China

http://orcid.org/0000-0003-2467-7406
http://orcid.org/0000-0002-0640-1783

	Block-based versus text-based programming: a comparison of learners’ programming behaviors, computational thinking skills and attitudes toward programming
	Abstract
	Introduction
	Literature review
	Block-based and text-based programming modalities
	Computational thinking and programming
	Multiple analysis of the programming process

	Methodology
	Research purpose and questions
	Educational context and participants
	Instructional procedures
	Data collection
	Data analysis

	Results
	Learners’ programming behaviors in two modalities
	Learners’ CT skills in two modalities
	Learners’ attitudinal changes in two modalities

	Discussion
	Addressing research questions
	Pedagogical implications

	Conclusion and future directions
	Acknowledgements
	References

