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Abstract
In the current era where computational literacy holds significant relevance, a growing 
number of schools across the globe have placed emphasis on K-12 programming educa-
tion. This field of education primarily comprises two distinct modalities—the block-based 
programming modality (BPM) and the text-based programming modality (TPM). Previ-
ous research may not have provided a complete understanding of the differences between 
these two modalities as it did not take into account both the learning process and learning 
outcomes. This study aimed to compare secondary students’ programming behaviors, com-
putational thinking skills, and attitudes toward programming between the  two modalities 
through a quasi-experimental design in a Chinese secondary school. The findings showed 
that (1) learners in TPM encountered more syntactical errors and spent more time between 
two clicks of debugging, while learners in BPM had more code-changing behaviors by 
adjusting programming blocks, made more attempts of debugging, and had more irrelevant 
behaviors; (2) learners in BPM achieved a higher level of computational thinking skills; 
(3) learners in both modalities experienced a slight decrease in confidence and enjoyment, 
while learners in BPM had higher interest levels in programming. (4) Code Changer, Mini-
mal Debugger, Maximal Debugger, Distracted Coder and Average Coder were identified 
through students’ programming behavior in the  two programming modalities, and differ-
ences in their CT skills and attitudinal data were revealed. Lastly, pedagogical implications 
based on the findings are also discussed.

Keywords Computational thinking · Text-based programming modality · Block-based 
programming modality · Programming behaviors · Instructional strategies

Introduction

Computational thinking (CT) is an essential twenty-first-century competency inspired by 
computer science practice and should be a part of all K-12 students’ analytic toolkits (Ma 
et al., 2021; Wing, 2014). To foster learners’ CT, many countries (e.g., China, the United 
States, and the United Kingdom) have integrated computer programming into their K-12 
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curricula (Angeli et al., 2016; Bey et al., 2019; Jocius et al., 2021). Block-based program-
ming modality (BPM) and text-based programming modality (TPM) are two major instruc-
tional modalities that have been widely used in K-12 programming education (Weintrop & 
Wilensky, 2019). BPM could provide visual cues to denote how and where to use a given 
command (Tempel, 2013), which makes computer science accessible and easy-to-under-
stand to novice learners (Bau et  al., 2017). Conversely, being a more conventional way, 
TPM requires learners to have the ability to write codes in various text-based programming 
languages (e.g., Python and Java), which would be useful in carrying out professional pro-
gramming projects and pursuing computer science careers (HelloGitHub, 2023).

While previous research has explored the differences in programming performance 
between TPM and BPM in terms of their effectiveness in supporting student learning 
(Weintrop & Wilensky, 2017) and the prerequisite knowledge and skills required to use 
each modality (Duncan et al., 2014), there is still a research gap in investigating how the 
learning process affects learning performance in the context of using TPM and BPM. 
There is a need for a fine-grained investigation of the differences between TPM and BPM 
that takes into account both the learning process and learning performance (Grover, 2021; 
Scherer et al., 2020; Weintrop & Wilensky, 2019). Given the importance of CT and com-
puter programming to K-12 curricula, it is important to understand the relative strengths 
and weaknesses of each modality and how they can be used to support student learning 
effectively. Our research aimed to fill this gap by comparing the effectiveness of TPM and 
BPM in a Chinese secondary school using a quasi-experimental design. We examined 
learners’ programming skills, CT skills, and attitudes toward programming in both modali-
ties to determine which modality was more effective in promoting students’ programming 
practice. Our findings provide insights for educators on how to design more effective 
instructional designs to support students’ programming skill acquisition and promote their 
CT development. By comparing the two modalities, we hope to inform educational prac-
tice to better prepare students for future programming challenges and careers.

Literature review

Block‑based and text‑based programming modalities

As the Turing Award winner, referred to as the “Nobel Prize of Computing”, Dijkstra (1982) 
argued, the tools we used had a far-reaching influence on transforming our thinking hab-
its and abilities. Echoing this idea, programming modality might have an important impact 
on changing learners’ thinking, which is a critical factor that instructors should consider 
in computer programming education. As two major programming modalities, BPM and 
TPM have been widely integrated into K-12 education. BPM offers a visual programming 
approach that utilizes a “programming-primitive-as-puzzle-piece metaphor” to design com-
puter programming (Bau et al., 2017). The visual illustration of a block presents available 
commands in logically-organized drawers, denotes how and where a given command can 
be used and prevents learners from making syntax errors during programming (Tempel, 
2013; Weintrop & Wilensky, 2015). Due to these easy-to-use attributes, BPM makes com-
puter science accessible and easy-to-understand to novice learners (Grover & Basu, 2017). 
Several BPM environments (see Fig. 1) are designed to lower the barrier to learning pro-
gramming by eliminating troublesome issues of syntax (Grover, 2021), including Scratch 
(an event-driven block-based programming language and online community developed by 
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Massachusetts Institute of Technology, https:// scrat ch. mit. edu/), Blockly (a web-based and 
block-based programming editor developed by Google, https:// devel opers. google. com/ block 
ly), and Alice (a block-based programming environment developed by Carnegie Mellon 
University, https:// www. alice. org/). BPM has been extensively used in introductory com-
puter science classes across K-12 education (Kölling et al., 2015).

As another widely-used modality in K-12 programming education, TPM is integrated 
especially for learners who can understand the syntax and logic of text-based codes (Yucer 
& Rizvanoglu, 2019). Figure  2 shows three typical text-based programming languages, 
including Python (a dynamic and interpreted language designed by Guido van Rossum, 
https:// www. python. org/), C (a general-purpose programming language created by Dennis 
Ritchie), and Java (a class-based and object-oriented programming language developed by 
James Gosling, https:// www. java. com/). Among these languages, Python is the official pro-
gramming language in selective Information Technology Curricula for Chinese secondary 
and high schools (Ministry of Education, 2017). Compared with BPM, TPM is perceived 
by learners as a more authentic and powerful tool in learning programming (Weintrop & 
Wilensky, 2015). TPM enables learners to proceed to a higher level of programming exper-
tise and provides opportunities for them to participate in professional programming pro-
jects (Weintrop & Wilensky, 2019). Hence, TPM is usually designed as the consequent 
step for learners after they are versed in BPM (Armoni et al., 2015), which cannot be sub-
stituted by BPM. However, learners usually encounter syntax errors, feel frustrated when 
stuck on these errors, and drop out easily in the higher-level programming courses in TPM 

Fig. 1  Three typical block-based programming modalities

Fig. 2  Three typical text-based programming modalities
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(Falloon, 2016). Thus, various instructional strategies have been used to alleviate frustra-
tions and difficulties they may encounter (Taub et al., 2012), facilitate learners’ text-based 
programming practice (Sun et  al., 2021), and promote their interests and motivations to 
learn with TPM (Alshaigy et al., 2015).

The research community has exhibited a growing interest in exploring the differences 
and linkages between text-based programming (TPM) and block-based programming 
(BPM). While BPM has been considered an effective way to introduce foundational pro-
gramming concepts and foster interest and motivation in novice learners (García et  al., 
2015; Howland & Good, 2014; Wilson & Moffat, 2010), it may pose challenges for learn-
ers in managing complex programming projects or applying programming knowledge to 
solve real-world problems (Duncan et al., 2014). TPM, on the other hand, is an essential 
skill for future professional programming careers (TIOBE, 2023), but novice learners in 
TPM may struggle with grammar and require more advanced programming knowledge and 
skills (Armoni et  al., 2015; Mladenović et  al., 2018; Price & Barnes, 2015). Our study 
aimed to compare the learning processes and outcomes in BPM and TPM for novice learn-
ers. By focusing specifically on the differences between the two programming modalities, 
our study aimed to provide empirical evidence for educators and scholars to better under-
stand the strengths and weaknesses of each modality and how they can be used to support 
novice learners in developing programming skills. Through this comparison, we hoped to 
provide insights for educators to design more effective and efficient instructional designs to 
support novices’ programming skill acquisition.

Computational thinking and programming

CT is a kind of analytical thinking that makes use of the common points with mathemati-
cal thinking, engineering, and scientific thinking (Wing, 2008), which could be fostered 
through divergent ways and contexts (i.e., participating in unplugged CS games (Taub 
et  al., 2012), applying strategies to acquire information for language learning (Mannila 
et al., 2014), joining STEM practices (Jocius et al., 2021)). Among different strategies, pro-
gramming has been proven to be one of the effective ways to improve learners’ CT skills 
(Brennan & Resnick, 2012; Jiang et  al., 2021; Pellas & Vosinakis, 2018). According to 
Tsai et al. (2021), previous literature on CT can be summarized using domain-specific and 
domain-general definitions. The domain-specific category indicates the domain-specific 
knowledge or skills that are required to systematically solve the problems in the subject 
domain of computer science or computer programming, researchers usually depend on a 
specific popular programming language, so Dr. Scratch (Garneli & Chorianopoulos, 2018), 
Bebras test (Rojas-López & García-Peñalvo, 2018), the Computational thinking test (CTt; 
Román-González et al., 2017) were widely used as the assessment tool.

While in the domain-general definition, researchers defined CT as the competen-
cies required for solving problems systematically in humans’ daily lives and all learn-
ing domains, so CT covered a set of thinking skills of creativity, algorithmic thinking, 
critical thinking, problem solving, establishing communication and cooperation (ISTE, 
2015; Mannila et al., 2014; Riley & Hunt, 2014). Wing (2011) defined CT as a thought 
process to effectively and efficiently deal with the problem, many researchers (Doleck 
et al., 2017; Katai, 2015) have even viewed CT as an integrated ability including algo-
rithmic thinking, social cooperative capacities, creative thinking, and critical thinking. 
It is obvious that the CT definition goes beyond problem solving contexts, and may need 
to be regulated by higher-level metacognitive skills (Allsop, 2019). Drawing on ISTE 
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(2015) and a range of research studies, Korkmaz et al. (2017) synthesized a definition of 
CT as the capacity to use an algorithmic approach to address challenges, while also fos-
tering communication and collaboration in a team-based setting. This process calls for 
utilizing innovative strategies to develop solutions that can tackle complex issues. The 
authors also identified five key elements of CT: algorithmic thinking, problem-solving, 
creativity, critical thinking, and cooperativity. Furthermore, Korkmaz et al. (2017) also 
developed and validated a CT scale for assessing students’ CT skills. This instrument 
has been widely utilized by various researchers to evaluate students’ CT proficiency 
(Durak & Saritepeci, 2018; Ma et al., 2021; Pellas & Vosinakis, 2018).

Multiple analysis of the programming process

Prior empirical research has utilized multiple analytical methods to explore varied per-
spectives of learners’ programming processes. Wu et  al. (2019) used a quantitative eth-
nography approach to analyze the collaborative programming between a high‐performing 
and a low‐performing team. Pereira et al. (2020) conducted a clustering analysis based on 
the students’ logs to inspect the patterns of programming behaviors in each student cluster 
and explored how these behaviors reflect on the evaluative factors (effective or ineffec-
tive behaviors). Sun et al. (2021) applied mixed methods, including click stream analysis 
and lag-sequential analysis, to analyze three contrasting pairs’ collaborative programming 
behaviors, discourses, and perceptions. As a complementary, the traditional, summative 
assessment (e.g., final tests, attitudinal test) can help reveal learners’ direct performances 
of computer programming knowledge or attitude. Those studies indicated that multiple 
analytical methods could be used to conduct the multidimensional analysis, which is ben-
eficial to demonstrate varied dimensions of programming learning.

As for the effectiveness of different programming modalities, many previous studies 
measured learners’ mastery of knowledge and skills or learners’ attitudinal changes, rather 
than learners’ higher-order thinking (Nolan & Bergin, 2016; Noone & Mooney, 2018). For 
example, in the quasi-experiment reported by Eid and Millham (2012), learners started 
with console-based procedural programming (e.g., COBOL) to gain a strong understand-
ing of basic programming concepts such as procedures, variables, and loops without need-
ing to learn the added complexities of a visual interface. The study by Weintrop (2015) 
revealed that high school learners in BPM achieved higher scores on knowledge perfor-
mance and reported higher levels of confidence, enjoyment, and interest. Weintrop and 
Wilensky (2017) designed a quasi-experimental study and found that high school learners 
in BPM achieved greater learning gains in programming concepts (e.g., variables, loops, 
conditionals, and functions) than in TPM in an introductory programming class.

Taken together, there is a current research trend to understand the difference in block-
based and text-based programming modalities in K12 formal education to better serve 
secondary school students’ programming learning and improve their engagement in the 
computer science field. In addition, following the analytical trend, this research collects 
multi-modal data to analyze students’ programming behaviors, CT skills, and attitudes 
toward programming in the two programming modalities.
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Methodology

Research purpose and questions

This research aimed to gain a deeper understanding of how learning occurs in each 
modality and to what extent each programming modality fosters their CT skills and their 
positive attitudes toward programming. This study conducted a quasi-experiment design 
in a secondary school. Multi-modal data (including learning platform log files, learners’ 
CT skills and their attitudinal data) were collected and different analytics approaches 
(i.e., statistical analysis, clustering analysis) were used to compare learners’ program-
ming behaviors, CT skills, and attitudes toward programming in TPM and BPM. Based 
on the results, this research will also seek to distill some pedagogical implications for 
future instructional design and empirical computer programming research. The specific 
research questions (RQ) are:

RQ1:  What were the differences in learners’ behaviors in learning via TPM versus BPM?
RO2:  What were the differences in learners’ CT skills in learning via TPM versus BPM?
RO3:  What were the differences in learners’ perceived attitudes towards programming in 

learning via TPM versus BPM?

Educational context and participants

The research was conducted in a compulsory course titled “Information Technology,” 
which was carried out in a Chinese secondary school during the autumn of 2020. A 
quasi-experimental design was utilized to investigate the differences in learners’ pro-
gramming behaviors, CT skills, and attitudes toward programming in TPM and BPM. 
There were 32 learners (13 female and 19 male) in the TPM class and 32 learners (15 
female and 17 male) in the BPM class. Students were around 13 years old, and most of 
them did not have programming experience in formal education. Classes were taught 
by the same instructor, who maintained a similar teaching style under two modalities, 
offered the same instructional materials to learners, and used the same teaching guid-
ance for each class, except the materials were presented via TPM or BPM.

Instructional procedures

The instructor designed three phases and six instructional sessions in this course, with 
each session lasting 45  min. In Phase I (the first session), the instructor introduced 
basic concepts of programming to learners and illustrated the TPM or BPM to each 
class. In Phase II (the second to fifth sessions), the instructor required learners to prac-
tice programming, including sequential, selective, looping, and function structures in 
the text-based or block-based programming environment. In Phase III (the sixth ses-
sion), the instructor asked learners to complete a series of programming projects. The 
series of programming projects tested learners’ basic programming knowledge taught in 
Phase II. During the instruction and learning processes, the instructor taught concepts, 
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algorithms, and coding operations with text-based programming in the TPM class and 
with block-based programming in the BPM class.

Code4all (see Fig.  3a) was utilized as the programming platform which supports 
both TPM and BPM. It is an online programming environment developed from Pencil 
Code, which allows users to freely move back and forth between text-based and block-
based versions of their programs. The two programming modalities are isomorphic, 
which means anything that can be done in one interface can also be done in the other. 
Unlike Pencil Code, Code4all prevents learners from moving between the two modali-
ties. Instead, learners either use the block-based interface or the text-based interface. 
Thus, for the duration of this study, learners were introduced to programming using 
either a text-based version of Code4all (see Fig. 3b) or a block-based version of Code-
4all (see Fig. 3c). This means learners in the BPM class programmed via the drag-and-
drop mechanism supported by the block-based interface, while the TPM class authored 
programs by typing in commands character-by-character. Aside from the programming 
modality, everything else about the two versions of the programming environment is 
identical, including the programming language (including keywords and syntax), the 
visual execution environment, and the programming capabilities and other environmen-
tal scaffolds. For both versions of Code4all, the underlying programming language was 

Fig. 3  The Code4all programming platform and two programming interfaces used in this study
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CoffeeScript. CoffeeScript was chosen because it is syntactically light and has an active 
professional user base (Weintrop & Wilensky, 2019).

Data collection

To capture learners’ programming learning performance, we collected multi-modal data, 
including platform logs, students’ CT skills, and attitudinal data (see Table 1). Secondly, 
we collected data about learners’ CT skills before and after the intervention, and learners in 
TPM and BPM took the same test. The test instrument for CT skills was adapted from the 
CT scale (CTS) developed by Korkmaz et al. (2017). This 5-point Likert scale contains five 
factors (creativity, algorithm thinking, cooperativity, critical thinking and problem solving) 
and 22 test items (see Table 1). Notably, the CTS was validated and applied among Chi-
nese K-12 learners by Bai and Gu (2019).

Thirdly, we collected learners’ self-reported pre- and post-survey about their attitudinal 
changes (see Table 2) during the study, and the survey was comprised of 10-point Likert 
scale questions. The contents in the pre- and post-surveys were largely the same except 
for the item related to changes in tense (past/future). The survey was based on items from 
the Attitudinal Survey that have been validated and widely used in computing education 
research studies (Weintrop & Wilensky, 2019).

Data analysis

We used multiple analytical approaches, such as statistical and clustering analysis, to examine 
the impact of learners’ programming learning quality between TPM and BPM (see Table 3).

Firstly, according to extracted variables and previous studies (Pereira et al., 2020), this 
study identified five programming behaviors: Average number of code-changes (AnC), 
Number of Irrelevant behaviors (NoIB), Number of debugs (NoD), Average time between 
two debugs (AtD), and Number of errors (NoE) (see Table  4). It should be noted that, 
despite the learner’s coding in different programming modalities, the codes recorded by the 
Code4all platform were in a text-based format. Descriptive statistics were used to provide 
an overall view of distribution of programming behaviors between TPM and BPM.

Additionally, clustering algorithms can reveal hidden patterns in complex datasets. In 
many prior studies (Dutt et al., 2015; Shi & Cristea, 2018; Shi et al., 2019), unsupervised 
learning methods were used to analyze novel relationships of educational variables. As 
learners’ behaviors were heterogeneous, we clustered them based on their logs and exam-
ined patterns of their programming behaviors within each student cluster. To accomplish 
this, we utilized the widely-used k-means algorithm (MacQueen, 1967), determine optimal 
number of clusters, select variables, standardize data and randomly select initial cluster 
centers. Assign each point to the closest center, calculate new centers, and repeat until con-
vergence. Evaluate results and interpret cluster characteristics based on research question 
and hypotheses. This method is effective for identifying cluster centroids and analyzing the 
distance between each pair of clusters, which enabled us to use the mean silhouette coeffi-
cient (Rousseeuw, 1987) for selecting the most appropriate number of clusters for our data. 
RapidMiner and Python language were used to conduct clustering analysis.

Secondly, we conducted a T-test to examine the difference in CT skills between the TPM 
and BPM groups. Furthermore, we utilized Analysis of Variance (ANOVA) to explore the 
difference in learners’ CT skills among different clusters.
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Thirdly, since the samples were independent and the underlying data is ordinal and non-
parametric (Fay & Proschan, 2010), we performed a Wilcoxon Rank Sum test (reported as 
a U statistic) to compare the two modalities. Additionally, we used Analysis of Variance 
(ANOVA) to investigate the difference in learners’ attitudes toward programming among 
different clusters. Taken together, mixed methods were used to examine learners’ program-
ming behaviors, CT skills, and attitudes toward programming from the summative and pro-
cess-oriented perspectives.

Additionally, to control for the increased likelihood of making a Type I error when con-
ducting multiple tests, we adjusted the significance level (alpha level) for each test using 
the Bonferroni correction, which divides the overall alpha level of 0.05 by the number of 
tests conducted (Emerson, 2020).

Table 2  Items in the survey of attitudes toward programming

Attitude N Items

Enjoyment of programming 3 Programming is Fun
I like programming
I am excited about this course

Confidence in programming ability 2 I am good at programming
I will perform/performed well in this course

Interest in future CS 2 I will find a job related to programming in the future
I will take more programming courses after this course

Table 3  Research analytical framework

Data source Analytical method Research question

Code4all log files Descriptive statistics/Clustering analysis (CA) RQ 1
CT skills scale T-test/ANOVA with Bonferroni correction RQ 2
Attitudinal Survey Descriptive statistics/Wilcoxon Rank- Sum test/ANOVA 

with Bonferroni correction
RQ 3

Table 4  Definition of different behaviors during programming

Behavior Definition

Average number of code-changes (AnC) The average number of line changes within the code between two 
clicks on debug button

Number of irrelevant behaviors (NoIB) Irrelevant behaviors refer to actions or behaviors that do not 
contribute to the completion of the programming task, such as 
browsing the internet, talking with classmates about non-task-
related topics, or working on unrelated assignments

Number of debugs (NoD) The number of clicks on debug button made by a student
Average time between two debugs (AtD) The average time spent between two clicks on debug button
Number of errors (NoE) The number of debugging that have errors (i.e., syntactical 

errors)
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Results

Learners’ programming behaviors in two modalities

To answer RQ 1 (What were the differences in learners’ behaviors in learning via TPM 
versus BPM?), learners’ total programming behaviors in two modalities were summarized 
(see Table 5).

The results showed that some obvious differences in learners’ programming behaviors 
between the two modalities. In particular, learners in TPM encountered more errors (NoE: 
M = 8.81, SD = 20.17) than those in BPM (NoE: M = 4.97, SD = 5.31). Learners’ average 
time spent between two clicks of debug button in TPM (AtD: M = 84.74, SD = 83.35) was 
almost twice as long as that in BPM (AtD: M = 46.97, SD = 32.19). In addition, learners’ 
average amount of code changing in BPM (AnC: M = 25.80, SD = 15.93) was slightly 
higher than that in TPM (AnC: M = 24.81, SD = 39.33). The number of clicks on debug 
button made by learners in BPM (NoD: M = 37.73, SD = 20.25) was higher than that in 
TPM (NoD: M = 32.03, SD = 43.06). Learners in BPM (NoIB: M = 35.20, SD = 24.06) had 
more irrelevant behaviors than those in TPM (NoIB: M = 25.53, SD = 17.26).

To further explore the differences in programming behaviors between the two modal-
ities, learners’ programming behaviors were modeled by using the features presented in 
Table 5. Previous studies found that it was possible to draw patterns using fine-grained data 
from one programming course (Estey & Coady, 2016; Munson & Zitovsky, 2018; Pereira 
et  al., 2019). We inspected the k-means clusters, and the convergence of k-means was 
achieved in the 10th iteration with k = 5 as the best value with the highest value of mean 
silhouette coefficient (0.57). 23.44% of the learners were assigned to Cluster 1, 20.31% to 
Cluster 2, 3.12% to Cluster 3, 6.25% to Cluster 4 and 46.88% to Cluster 5 (see Table 6). 
Figure 4 depicts the programming profile of learners for each cluster in two modalities.

Comparing the features among five clusters, Cluster 1 was identified as the Code 
Changer, they had the second highest frequency of code changing (AnC: M = 44.53, 
SD = 10.69) and the number of clicks on debugs (NoD: M = 60.73, SD = 11.28), the sec-
ond lowest number of irrelevant behaviors (NoIB: M = 23.73, SD = 12.09), and the mod-
erate frequency of the number of errors (NoE: M = 10.67, SD = 7.89) amongst the five 
clusters. Based on the clustering analysis, we found that five students from TPM and ten 
students from BPM were assigned to this cluster. Cluster 2 was identified as the Minimal 
Debugger where students had the longest time interval between two clicks of debug (AtD: 
M = 174.43, SD = 72.95), and the lowest frequency of code changing (AnC: M = 4.00, 
SD = 2.45), number of clicks on debugs (NoD: M = 7.69, SD = 3.73), and the number of 
errors (NoE: M = 0.38, SD = 0.62). According to the cluster analysis results, it was deter-
mined that this particular cluster comprised ten students from TPM and three students 
from BPM. Two learners from TPM were clustered into Cluster 3 which was identified 

Table 5  Mean and standard deviation of the programming behaviors for TPM and BPM

TPM text-based modality, BPM block-based modality, AnC average number of code-changes, NoIB number 
of irrelevant behaviors, NoD number of debugs, AtD average time between two debugs, NoE number of 
errors

M N AnC NoIB NoD AtD NoE

TPM 32 24.81 (39.33) 25.53 (17.26) 32.03 (43.06) 84.74 (83.35) 8.81 (20.17)
BPM 32 25.80 (15.93) 35.20 (24.06) 37.73 (20.25) 46.97 (32.19) 4.97 (5.31)
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as the Maximal Debugger. Here, they had the highest frequency in code changing (AnC: 
M = 162.00, SD = 35.00) and the numbers of debugs (NoD: M = 179.50, SD = 40.50), and 
they encountered the highest number of errors (NoE: M = 82.00, SD = 14.00), and had the 
lowest frequency in irrelevant behaviors (NoIB: M = 14.78, SD = 10.78) among five clus-
ters. Cluster 4, which was identified as the Distracted Coder, had the highest frequency 
of irrelevant behaviors (NoIB: M = 84.25, SD = 11.09), the second lowest frequency of 
the number of debugs (NoD: M = 10.00, SD = 11.47), and the moderate behavior of the 
number of errors (NoE: M = 11.75, SD = 3.47). This cluster consisted of two students from 

Table 6  Mean and standard deviation of the features for clusters in two modalities

The table shows the average value of each behavior

Clu Mod N AnC NoIB NoD AtD NoE

1 Total 15 44.53 (10.69) 23.73 (12.09) 60.73 (11.28) 26.04 (7.42) 10.67 (7.89)
TPM 5 44.20 (10.11) 18.13 (10.11) 56.40 (9.58) 23.92 (9.58) 13.40 (9.58)
BPM 10 44.70 (10.97) 26.53 (12.02) 62.90 (11.86) 27.09 (5.77) 9.30 (6.47)

2 Total 13 4.00 (2.45) 27.00 (13.49) 7.69 (3.73) 174.43 (72.95) 0.38 (0.62)
TPM 10 3.00 (1.73) 25.69 (15.05) 6.10 (2.55) 186.05 (79.30) 0.30 (0.46)
BPM 3 7.33 (1.25) 31.36 (3.09) 13.00 (1.41) 135.70 (12.18) 0.67 (0.94)

3 Total (TPM) 2 162.00 (35.00) 14.78 (10.78) 179.50 (40.50) 5.91 (2.23) 82.00 (14.00)
4 Total 4 11.39 (10.53) 84.25 (11.09) 10.00 (11.47) 15.11 (14.32) 11.75 (3.74)

TPM 2 12.26 (0.42) 49.00 (0.77) 3.00 (0.17) 3.00 (0.48) 19.00 (0.82)
BPM 2 13.50 (12.50) 119.50 (0.50) 17.00 (14.00) 27.23 (12.23) 4.50 (4.50)

5 Total 30 17.44 (7.60) 28.13 (10.06) 26.11 (8.98) 46.49 (16.96) 3.23 (3.12)
TPM 14 15.07 (6.78) 24.57 (8.66) 21.71 (7.53) 47.90 (19.21) 3.21 (3.30)
BPM 16 19.39 (7.70) 31.06 (10.18) 29.73 (8.44) 45.32 (14.75) 3.24 (29.60)

Fig. 4  Programming profile of learners for each cluster in two modalities. TPM Text-based modality, BPM 
Block-based modality, AnC Average number of code-changes, NoIB Number of irrelevant behaviors, NoD 
Number of debugs, AtD Average time between two debugs, NoE Number of errors
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TPM and two students from BPM. Cluster 5, which was identified as the Average Coder, 
had the average frequency of code changing, number of debugs, number of errors, irrele-
vant behaviors, and the time interval between two clicks of debugs among the five clusters.

Learners’ CT skills in two modalities

As to RQ 2 (What were the differences in learners’ CT skills in learning via TPM ver-
sus BPM?), regarding learners’ CT skills, there was no significant difference (creativ-
ity: p = 0.286; algorithm thinking: p = 0.185; cooperativity: p = 0.217; critical thinking: 
p = 0.067; problem solving: p = 0.095; overall CT skill: p = 0.941) before the intervention. 
The results revealed that, after the intervention, statistically significant differences were 
identified for algorithm thinking (t = 3.23, p = 0.002), cooperativity (t = − 2.11, p = 0.038), 
problem solving (t = −  2.72, p = 0.008) and overall CT skills (t = −  2.58, p = 0.012). In 
terms of algorithm thinking, cooperativity, problem solving and overall CT skills, learners 
in the BPM group outperformed those in the TPM group (see Table 7).

ANOVA analysis with Bonferroni correction results indicated that in TPM (see 
Table 8), Maximal Debuggers (C3) performed significantly better than Code Changers 
(C1) in the sub-items of problem-solving (F = 2.39; p = 0.004). However, in terms of 
CT skills, no significant difference was found among students across the four clusters in 
BPM, although Code Changers (C1) had the highest performance and Distracted Coders 
(C3) had the lowest performance.

Learners’ attitudinal changes in two modalities

As to RQ 3 (What were the differences in learners’ perceived attitudes towards program-
ming in learning via TPM versus BPM?), the first attitudinal dimension sought to under-
stand if learners enjoyed programming and, if so, how it differed by modality during 
the intervention time (see Fig. 5a). A Cronbach’s Alpha test was run on these questions 
and found a sufficient level of correlation (Pre: α = 0.82, Post: α = 0.86), which met the 

Table 7  Statistical summary of 
learners’ CT skills in the two 
modalities

*p < .05; **p < .01

CT Group M SD t p

Creativity TPM 3.83 0.83 − 1.65 0.103
BPM 4.16 0.60

Algorithm thinking TPM 3.57 0.87 − 3.23** 0.002
BPM 4.24 0.66

Cooperativity TPM 3.85 1.07 − 2.11* 0.038
BPM 4.35 0.68

Critical thinking TPM 3.78 0.94 − 1.05 0.296
BPM 4.00 0.66

Problem solving TPM 3.94 0.67 − 2.72** 0.008
BPM 4.39 0.63

Overall TPM 3.79 0.75 − 2.58* 0.012
BPM 4.23 0.53
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0.70 thresholds often cited as the minimum level of acceptability for research purposes 
(Streiner, 2003). Examining the changes in the pre-and post-test, shown in Fig. 5a, a slight 
decrease was found in the two modalities. However, there was no statistically significant 
differences emerging between time periods within the groups or at the same time period 
across the modalities (Pre: U = 431.00, p = 0.274; Post: U = 456.50, p = 0.454). Such lack 
of difference leads to the conclusion that modality does not affect perceived enjoyment in 
novice learners, which also suggests that the increased enjoyment of programming found 
in other studies using block-based tools (e.g., Wilson & Moffat, 2010) may have more to 
do with the curriculum used or the context in which learners learn programming than the 
modality itself.

Table 8  ANOVA results of learners’ CT skills in different clusters

We applied the Bonferroni correction to account for multiple comparisons and used an adjusted alpha level 
of 0.005
**p < 0.01

Group CT C1 C2 C3 C4 C5 F
M (SD) M (SD) M (SD) M (SD) M (SD)

TPM Overall 3.44 (0.61) 3.61 (0.76) 4.59 (0.26) 4.39 (0.19) 3.71 (0.51) 1.43
Creativity 3.05 (0.68) 3.75 (0.75) 4.50 (0.25) 4.68 (0.07) 3.25 (0.92) 1.15
Algorithm 

thinking
3.42 (0.75) 3.55 (0.70) 4.50 (0.50) 4.38 (0.37) 3.79 (0.89) 1.15

Cooperativity 3.55 (0.97) 3.60 (1.17) 4.00 (0.00) 4.28 (0.23) 4.00 (0.94) 1.05
Critical think-

ing
3.82 (0.85) 3.35 (0.95) 4.63 (0.38) 4.23 (0.02) 3.85 (0.86) 1.36

Problem solving 3.03 (0.58) 3.82 (0.68) 4.43 (0.67) 4.32 (0.25) 4.01 (0.48) 2.39** C3 > C1
BPM Overall 4.43 (0.46) 4.31 (0.28) – 4.11 (0.47) 4.12 (0.56) 1.04

Creativity 4.40 (0.58) 4.42 (0.31) – 4.00 (0.25) 4.01 (0.60) 1.61
Algorithm 

thinking
4.43 (0.54) 4.00 (0.54) – 4.13 (0.63) 4.19 (0.70) 0.50

Cooperativity 4.45 (0.60) 4.83 (0.24) – 4.38 (0.63) 4.22 (0.73) 0.78
Critical think-

ing
4.28 (0.63) 3.83 (0.24) – 3.75 (0.50) 3.91 (0.69) 1.30

Problem solving 4.60 (0.54) 4.44 (0.42) – 4.42 (0.25) 4.25 (0.69) 0.64

Fig. 5  Scores of learners’ enjoyment (a), confidence (b) and interest (c) in programming at two points
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The second attitudinal dimension was learners’ perceived confidence in their program-
ming ability. The confidence questions had Cronbach’s α scores of 0.85 on the pre-survey 
and 0.80 on the post-survey. Looking at the two distinct points at which the survey was 
administered (see Fig.  5b), we found a significant difference in confidence between the 
modalities in the pre-survey, while no significant difference was found in the post-survey 
(Pre: U = 333.00, p = 0.016; Post: U = 461.50, p = 0.494). Despite a significant difference 
between the conditions at the outset of the study, the difference did not appear in post 
administrations of the survey. This is echoed by Weintrop and Wilensky (2019) that pro-
gramming modality alone does not seem to affect students’ confidence in their program-
ming ability.

The third attitudinal dimension was learners’ interest in pursuing future computer sci-
ence learning opportunities. A Cronbach’s Alpha test was run on these questions and found 
a sufficient level of correlation (Pre: α = 0.75, Post: α = 0.70). Regarding learners’ interest 
in future computer science courses (see Fig. 5c), the study found that learners in the two 
modalities started with different points (not significant) and went in different directions. 
BPM class showed an increasing trend, while TPM revealed a slightly decreasing trend in 
the post-survey. Besides, the study found no significant difference in confidence between 
the modalities (Pre: U = 462.00, p = 0.501; Post: U = 421.00, p = 0.220). This pattern 
matches the findings of researchers identifying the difficulty in text-based programming 
learning, such as higher demand for reserved knowledge and a higher possibility of gram-
matical errors (Armoni et al., 2015). Overall, the study’s instructional treatments witnessed 
BPM participants becoming more interested in computer science courses, while learners in 
TPM became less interested.

ANOVA analysis with Bonferroni correction results revealed that, in terms of learn-
ers’ attitudes toward programming in different clusters, the homogeneity of variances 
assumption was checked before the formal analysis and confirmed through Levene’s tests 
for equality of variances (enjoyment (F = 0.009; p = 0.927 > 0.05); confidence (F = 0.448; 
p = 0.506 > 0.05); interest (F = 0.059; p = 0.0.809 > 0.05). Table  9 revealed that, in TPM, 
it was found that in the confidence aspect, Cluster 3 significantly outperformed Cluster 1 
(F = 2.53, p = 0.004). In BPM, Cluster 2 scored significantly higher than Cluster 5 in inter-
est level (F = 1.96, p = 0.001).

Table 9  ANOVA results of learners’ attitudes toward programming in different clusters

We applied the Bonferroni correction to account for multiple comparisons and used an adjusted alpha level 
of 0.005
*p < 0.01

Group CT C1 C2 C3 C4 C5 F

M SD M SD M SD M SD M SD

TPM Enjoyment 6.33 2.34 7.20 2.16 9.34 0.67 9.50 0.50 7.13 1.39 1.67
Confidence 4.60 1.33 7.30 2.03 8.75 1.25 8.50 0.50 6.07 1.29 2.53** C3 > C1
Interest 6.72 1.50 5.90 1.93 9.00 1.00 6.50 0.50 5.62 1.51 2.23

BPM Enjoyment 7.73 1.89 8.22 1.85 – 8.00 1.67 7.29 1.87 0.21
Confidence 7.25 2.05 8.33 1.70 – 6.75 0.75 7.09 1.54 0.40
Interest 7.23 1.33 8.82 1.34 – 7.33 2.00 5.28 1.93 1.96** C2 > C5
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Discussion

Addressing research questions

With the more pervasive development of computer programming education, there is 
increasing research on how learning occurs under the two typical programming modalities 
(BPM and TPM). This study collected multi-modal data to analyze students’ programming 
behaviors, CT skills, and attitudes toward programming in two programming modalities. 
Learners’ CT skills under two modalities were compared through pre- and post-test, and 
changes in learners’ attitudes toward programming under two modalities were also ana-
lyzed through pre- and post-surveys.

For research question 1, this research revealed that learners in TPM tended to spend 
more time between two clicks of debug button and encountered more syntactical errors. 
Students in BPM spent more time on code changing (operating blocks and adjusting 
parameters), made more attempts at debugging, and had more irrelevant behaviors. The 
research revealed five clusters based on students’ programming behaviors, including Code 
Changer (C1), Minimal Debugger (C2), Maximal Debugger (C3), Distracted Coder (C4), 
and Average Coder (C5).

For research question 2, the results of comparing students’ CT skills in the two modali-
ties from the post-test found that learners in BPM outperformed those in the TPM group in 
terms of their algorithm thinking, cooperativity, and overall CT skills. One possible expla-
nation is that block-based programming environments provide learners with a more intui-
tive and concrete way of coding, where they can drag and drop blocks to create programs 
instead of writing lines of text. This approach can help learners better understand funda-
mental programming concepts, such as sequencing, conditionals, loops, and variables, and 
develop their algorithmic thinking (Grover, 2021; Mladenović et al., 2018). Furthermore, 
BPM supports the iterative development of programs, enabling learners to see immedi-
ate results as they build their code. BPM also includes tools to promote cooperativity and 
collaboration, including the sharing of code resources, co-programming, and peer review 
sessions, which can enhance communication, cooperation, and social skills, all of which 
are essential components of CT (Grover & Basu, 2017; Jiang et al., 2021; Maloney et al., 
2008).

Additionally, in TPM, frequent coding and debugging is associated with higher prob-
lem-solving performance, likely due to the expressive nature of languages like Python and 
their flexibility in designing tailored solutions (Kölling et  al., 2015). Conversely, block-
based programming languages, such as Scratch or Blockly, rely on pre-built code blocks 
and may limit the complexity and abstraction that can be achieved (Weintrop & Wilensky, 
2019). Active coding and debugging is crucial for developing programming concepts and 
problem-solving skills, students can develop a deeper understanding of programming con-
cepts and become more proficient at identifying and resolving problems. This skill is likely 
more effectively developed in text-based programming than block-based programming, as 
it requires students to work on their own code, rather than simply dragging and dropping 
pre-built blocks (Weintrop & Wilensky, 2015).

For research question 3, in terms of learners’ attitudinal changes toward programming 
between pre- and post-test, learners in TPM showed a slight decrease in enjoyment, con-
fidence, and interest in future CS. Learners in BPM showed an increase in interest, while 
they had a decrease in enjoyment and confidence for programming. One possible reason 
is the scaffolding approach used in block-based programming. Scaffolding allows learners 
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to easily complete tasks without getting bogged down by syntax errors or other technical 
complications. As a result, learners may have been more motivated to engage in program-
ming and learned to appreciate the satisfaction of programming. However, the decrease in 
enjoyment and confidence may reflect the limitations of block-based programming. Learn-
ers may perceive it as a less challenging, and thus less interesting, medium than text-based 
programming (Grover & Basu, 2017).

Furthermore, the Maximal Debugger (C3) in text-based programming demonstrated 
significantly higher confidence levels compared to the Code Changer (C1), indicating a 
correlation between text-based programming and increased self-efficacy (Lin & Weintrop, 
2021). Furthermore, the Minimal Debugger (C2) in block-based programming exhibited 
significantly higher interest levels, potentially due to the immediate visual feedback and 
error highlighting offered by block-based programming (Tempel, 2013). The Minimal 
Debugger’s additional features, such as step-by-step debugging, is likely to contribute to a 
positive learning experience in block-based programming.

Pedagogical implications

Firstly, instructors could consider integrating block-based programming into introductory 
programming courses to improve novice learners’ CT skills. Programming can encourage 
learners to observe time-varying phenomena, support certain types of causal explanations, 
and segment the world into processes, which can help cultivate CT skills (Sherin, 2001). 
Our study found that learners in BPM achieved a higher level of overall CT skills and sub-
items compared to those in TPM. This supports the effectiveness of BPM in facilitating 
novice learners’ programming learning (Grover et al., 2015). In contrast, learners in TPM 
experienced a slight decrease in overall CT skills and the five sub-items. This may be due 
to the challenge of grammatical errors and the need for additional learning materials in the 
text-based modality (Armoni et al., 2015; Mladenović et al., 2018; Price & Barnes, 2015), 
as well as the time period of receiving instruction. Weintrop and Wilensky (2019) found 
that students in the text-based programming condition achieved fewer gains in computer 
science concepts during the introductory period but had incremental improvement in the 
following 15-week study.

Secondly, instructors may adopt different strategies in TPM and BPM to promote the 
learner’s engagement during the programming process. Our results showed that, with its 
flexibility and convenience, the BPM led to fewer syntax mistakes and more debugging 
and irrelevant behaviors from learners. In addition, learners in BPM experienced increased 
interest in programming. Therefore, instructors should provide learners with more inter-
vention when noticing learners’ irrelevant behaviors in BPM. As for TPM, learners wrote 
longer lines of code, had longer time intervals between two clicks of debugs and encoun-
tered more syntax errors. Eid and Millham (2012) suggested that TPM required learners to 
spell and type in all the codes, which provided learners with a critical step for mastering a 
new programming language. Hence, in TPM, instructors may encourage learners to have 
more attempts in debugging and also provide learners with more scaffolding for error cor-
rection, such as an explanation list of some common debugging errors or a summary form 
of the most frequent syntactical errors from earlier programming practices for each learner.

Thirdly, to improve student performance, instructors should consider students’ charac-
teristics and encourage them to engage in both coding and debugging activities, regardless 
of the modality. Students who frequently engage in these activities tend to display higher 
problem-solving skills and interest in programming. Through coding and debugging, 
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learners can deepen their understanding of programming concepts and become better prob-
lem solvers. Instructors can also assist students in identifying and resolving debugging 
errors by providing debugging information and sharing common errors among students in 
the class (Giannakos et al., 2013; Sun et al., 2021). By targeting debugging errors, instruc-
tors can help students become more proficient in debugging and improve their overall 
performance.

Taken together, the findings of this study are consistent with earlier research demon-
strating that different representational forms have unique affordances that can affect learn-
ers’ conceptualization of the material (Sherin, 2001; Weintrop & Wilensky, 2017). While 
programming instruction may vary by country and culture, and instructors may choose dif-
ferent modalities based on students’ grade levels, the results of this study provide valu-
able insights for designing programming instruction in secondary and post-secondary 
education.

Conclusion and future directions

Identifying the fine-grained difference in programming modalities is crucial in promoting 
computer programming education and cultivating computational literacy. This quasi-exper-
imental study in a secondary school compares learners’ behavior patterns, CT skills, and 
attitudes toward programming in BPM and TPM, revealing differences between modali-
ties. However, this study has three limitations. Firstly, our study is limited by the specific 
context in which it was conducted, as the sample used may not be representative of other 
populations. These limitations emphasize the need for cautious interpretation and repli-
cation with larger, more diverse samples. Secondly, this study collected survey data and 
actual behavioral data in an experimental study, future research could use performance-
based tests or observation to gain a deeper understanding of CT skills and consider mixed 
methods with qualitative interviews to explore the learners’ experiences and how BMP 
and TPM could complement each other. Thirdly, following the trend of multimodal learn-
ing analytics (Ochoa, 2017), this study collected multi-modal data from log files and sur-
vey data. Future research could consider collecting more diverse sources of data to reveal 
learners’ behavioral, cognitive, metacognitive, and social activities during programming 
learning.

Overall, it is critical to cultivate young learners’ CT to prepare them for future learn-
ing and jobs. In this context, this study that probes the differences in learning via block-
based versus text-based programming modalities contributes to understanding effective 
approaches for implementing K-12 programming education and cultivating relevant CT 
skills.
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