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A B S T R A C T   

This study proposes a new VMD-ICEEMDAN-LSTM model, which combines secondary decom-
position with long short-term memory neural networks (LSTM) to forecast the realized volatility 
(RV) of Chinese crude oil futures. The RV sequence is first decomposed into subcomponents and 
residuals through variational mode decomposition (VMD). Then, the iterative complete ensemble 
empirical mode decomposition with adaptive noise (ICEEMDAN) is applied to perform a sec-
ondary decomposition on the residuals. Finally, we apply LSTM to forecast all decomposed 
components, and then combine all forecasting results to obtain our final forecast value. Our re-
sults show that the VMD-ICEEMDAN-LSTM model significantly outperforms existing individual 
and combination models.   

1. Introduction 

Energy is an indispensable driver of global economic development. The crude oil futures market, as the most mature and open 
financial energy trading market, plays an important role in international energy markets. Therefore, the accurate prediction of crude 
oil futures price fluctuations has become a focus of attention in academia. 

The three main approaches to forecasting crude oil futures prices are traditional econometric models, artificial intelligence models, 
and combination models. Traditional econometric models rely on the fulfillment of specific statistical assumptions prior to modeling, 
including assumptions about the distribution of returns and the stationarity of the data. Moreover, these models necessitate intricate 
data processing and transformation, which restricts their practical application in economic and management problems (Taylan, 2017; 
Kim and Won, 2018). In contrast, machine learning methods do not depend on predetermined assumptions regarding data distribution 
or stationarity, thus making them more flexible and applicable in various contexts. Moreover, these methods struggle to capture the 
nonlinear relationships and long-term memory effects present in time series data, both of which are characteristics of crude oil futures 
price volatility, while artificial intelligence models can handle complex time series data and achieve higher predictive accuracy 
(Christensen et al., 2022). Neural network models, particularly the LSTM model, have been widely recognized for their ability to 
handle high-frequency realized volatility data with long-term memory characteristics (see, e.g., Kim and Won, 2018; Liu, 2019; Guo 
et al., 2022). The LSTM model has excellent descriptive capabilities for time series data with long memory, as it can effectively transmit 
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and express information in long-time sequences without “forgetting” previous information. 
Although the LSTM model has greatly improved prediction accuracy, microstructural noise in high-frequency data can impact its 

accuracy. To overcome this problem, researchers have turned to combination models. One common approach is to decompose the 
original sequence using signal processing methods, apply predictive models to each component obtained from the decomposition, and 
then sum the predicted values of all subsequences to obtain the final prediction result of the original sequence (Li and Tam, 2017). 
VMD is a widely used method for data decomposition that can effectively enhance the signal-to-noise ratio of the decomposed 
components, thereby resulting in more comprehensive input feature information for the predictive model and significantly improved 
prediction accuracy (Dragomiretskiy and Zosso, 2014). Combining VMD with machine learning models has been recognized as an 
effective way to further improve prediction accuracy (see, e.g., He et al., 2019; Liu et al., 2020). 

Many existing studies only perform a single decomposition and directly discard the residual term that encompasses numerous 
features. However, this practice undermines the effectiveness of data decomposition (Abdoos, 2016; Lahmiri, 2017). Moreover, other 
studies do not consider that the residual term, after VMD decomposition, still has a high degree of complexity and directly predicted it 
(e.g., Niu et al., 2020; Yang et al., 2021; Huang and Deng, 2021), thereby resulting in insufficient prediction accuracy. To improve the 
model’s overall prediction accuracy, we aimed to enhance the prediction accuracy of the residual term. Herein, we propose a model for 
the secondary decomposition of VMD using the residual term that differs from those of Zhan & Tang (2022), Zhang et al. (2022) and 
Tang et al. (2023), who used EEMD for secondary decomposition of the VMD residual term. This paper takes into consideration the 
problem of reconstruction error that cannot be eliminated by EEMD, while Colominas et al. (2014) proposed ICEEMDAN, which not 
only improved this issue but also addressed the defects of residual noise and pseudo-modes after decomposition. Therefore, we decided 
to use ICEEMDAN to perform secondary decomposition on the residual term obtained from VMD decomposition and proposed the 
VMD-ICEEMDAN-LSTM model for the first time. The characteristics of this model are as follows. 

(1) This paper addresses two issues in the existing research on handling residual components after VMD decomposition. Specif-
ically, that (a) discarding residual components that contain many valuable features weakens data decomposition and causes 
distortion, and (b) directly predicting high-complexity residual components leads to insufficient prediction accuracy. This study 
improves prediction accuracy using quadratic decomposition of residual components after VMD decomposition.  

(2) To address the issue of unrecoverable reconstruction error in EEMD, this paper utilizes ICEEMDAN to perform secondary 
decomposition on the residual components obtained from VMD decomposition. This improves the residual components’ as well 
as the model’s overall prediction accuracy. Previous research has demonstrated that ICEEMDAN is effective in addressing this 
issue.  

(3) Compared to traditional statistical models, LSTM automatically extracts crucial feature information from crude oil futures price 
volatility, thus eliminating the need for manual feature selection. This enhances its effectiveness, flexibility, and user- 
friendliness in handling nonlinear and nonstationary data. Additionally, LSTM captures the extended dependencies of 
sequential data, thus leading to improved forecasting of market volatility trends. Hence, this study employs an LSTM model to 
predict the realized volatility of crude oil futures. 

The remainder of this paper is organized as follows. Section 2 provides a general description of the methods that we use in our 
empirical analysis. Section 3 describes the data and provides a preliminary analysis. Section 4 conducts the empirical research. Section 
5 concludes. 

2. Methods 

2.1. Realized volatility 

In this paper, we use intraday futures returns to construct the daily realized volatility as follows: 

RV(t) =
∑M

j = 1
r2
t,j (1)  

where M is sampling frequency and rt,jrepresents the j-th intraday return on day t. 

2.2. Data decomposition 

Previous research confirms that decomposing the original RV(t) using data decomposition techniques can mitigate noise-induced 
uncertainty in RV prediction (see, e.g., Wang and Wang, 2020; Liang et al., 2022). This paper introduces a VMD-ICEEMDAN-LSTM 
model that utilizes data decomposition and a deep learning LSTM. The details of the VMD and ICEEMDAN techniques are as follows. 

2.2.1. VMD 
The VMD method is a non-recursive variational mode decomposition signal analysis method. The constraints of the variational 

problem can be formulated as follows: 
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⎧
⎪⎪⎪⎨
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]
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}
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∑

k
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(2)  

where {uk} = {u1,…, uk} is the set of all modes and {ωk} = {ω1,…, ωk} represents the center frequency sequence. To obtain more 
optimal results, the process can be summarized as follows: 

L({uk}, {ωk}, λ) := α
∑

k
‖∂t

[(

δ(t) +
j
πt

)

∗ uk(t)
]

e− jωkt ‖
2
2

+ ‖ f (t) −
∑

k
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2+ < λ(t), f (t) −
∑
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(3)  

where λ(t) is the Lagrange multiplier and α is a quadratic factor. 
The optimal solution for Eq. (3) can be obtained by iteratively updating the modal components and their corresponding center 

frequencies using the multiplier alternating direction method. The optimal solutions for the modal components and center frequencies 
are as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ûn+1
k (ω) :=

f̂ (ω) −
∑

i∕=k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω − ωk)
2

ωn+1
k :=

∫ +∞

0
ω|ûk(ω)|2dω

∫ +∞

0
|ûk(ω)|2dω

(4)  

where ûn+1
k , f̂ (ω), ûk(ω) and λ̂(ω) decompose the Fourier transforms into un+1

k (ω), f(ω), ui(ω) and λ(ω). 

2.2.2. ICEEMDAN 
Colominas et al. (2014) proposed ICEEMDAN to address the issues of residual noise and spurious modes in CEEMDAN. The specific 

formula for ICEEMDAN is as follows: 
First, a set of white noise is added to the original sequence to obtain a new sequence: 

Li(t) = L(t) + ρ0E1(εi(t)). (5) 

The new sequence is then subjected to EMD decomposition to obtain the first set of residuals: 

R1(t) = 〈C(Li(t))〉. (6) 

Next, IMF1(t) = L(t) − R1(t) is obtained. Then, white noise is continued to be added and the local mean is used to obtain the second 
set of residuals: 

R2(t) = 〈C(R1(t) + ρ1E2(εi(t)))〉. (7) 

Then, IMF2 = R1(t) − R2(t) is obtained. This process is repeated until the n-th set of residuals and the n-th IMF component are 
obtained: 

{
Rn(t) = 〈C(Rn− 1(t) + ρn− 1En(εi(t)))〉

IMFn(t) = Rn− 1(t) − Rn(t)
(8) 

Fig. 1. One basic unit of LSTM.  
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where ρj represents the parameter for controlling the white noise energy in each iteration, En( ⋅ ) denotes the IMFs component generated 
by the EMD decomposition, 〈 ⋅ 〉 represents the operation of averaging, and C( ⋅ ) is the operator that produces the local mean of the 
original series. 

2.3. LSTM model 

The settings of the cell state and gate mechanism in the LSTM model make it easier for it to reset, update, and remember long-term 
information. 

In Fig. 1, Ct refers to the cell state, ht refers to the hidden state, and Xt is the input. The process of obtaining an LSTM unit is as 
follows: 

First, the forget gate ft filters and retains historical information that indicates long-term trends while discarding noncritical 
information: 

ft = σ
(
Wf ⋅ [ht− 1, xt] + bf

)
. (9) 

Next, the update gate itextracts new information from the input xt and creates a candidate value c̃t to update the state: 

it = σ(Wi ⋅ [ht− 1, xt] + bi), (10)  

c̃t = tanh(Wc ⋅ [ht− 1, xt] + bc). (11) 

Then, by removing some information from the old cell and adding the filtered candidate value, the old cell state ct − 1 is updated to 
the new cell state ct: 

ct = f ∗t ct− 1 + i∗t c̃t. (12) 

Finally, the output gate ot filters the updated ct and calculates the final output based on the new state and the output gate state: 
{

ot = σ(Wo ⋅ [ht− 1, xt] + bo)

ht = ot ⋅ tanh(ct)
. (13)  

2.4. VMD-ICEEMDAN-LSTM model 

Based on the above method, we propose a secondary decomposition technique using the residual term from the VMD decompo-
sition. Specifically, ICEEMDAN is used to further decompose the residual term after VMD decomposition. Fig. 2 shows the detailed flow 
chart of the prediction process. 

Fig. 2. Flow chart of the VMD-ICEEMDAN-LSTM model.  
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2.5. Evaluation criteria 

This study selects four common loss functions: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⃒
⃒
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⃒1 −

ŷ
y

⃒
⃒
⃒
⃒
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(

1 −
ŷ
y

)2

(14)  

where H refers to the total length of the predicted sample, y represents the ground truth, and ŷ represents the predicted value. 
To obtain more robust test results, we use the MCS test (Hansen et al., 2011) as a method to test the out-of-sample predictive ability 

of each model. In this study, we choose range statistic TR and semi-quadratic statistic TSQ as the test criteria: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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⃒
⃒dij

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(
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)√
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(
dij
)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var
(
dij
)√

(15)  

where dij = H− 1 ∑H
t = 1dij,t represents the average value of the relative loss function values of the RV predictions of models i and j. 

3. Empirical results 

3.1. Data analysis 

Andersen & Bollerslev (1998) pointed out that five-minute high-frequency data can strike a balance between meeting the high 
frequency requirements of the sample and reducing micro noise. This study selects the five-minute high-frequency data of Chinese 
crude oil futures from March 26, 2018 to January 31, 2023 to calculate RV based on Eq. (1). The original data are sourced from the 
Tushare database. 

Table 1 exhibits the descriptive statistics of the RV of Chinese crude oil futures. The data show that the RV of Chinese crude oil 
futures has significant features such as being leptokurtic and skewed, while Jarque–Bera statistic indicates that it has a significant 
nonnormal distribution and the Ljung–Box statistic shows the existence of a long-memory feature. Fig. 3 depicts the RV time series of 
Chinese crude oil futures. 

3.2. Data decomposition 

The original RV is first decomposed into several components and a residual term using the VMD, and then the residual term is 
secondary decomposed by ICEEMDAN. Before performing VMD decomposition, it is necessary to determine the number K of modal 
decomposition. This paper chooses the central frequency method to determine K. 

Table 2 shows the central frequencies of IMFs under different K values. Since the similar frequency of 0.488 stabilizes after K = 9, K 
is set to 8. 

Fig. 4 shows the decomposed subsequences, where each IMF component in the figure is sorted from high to low frequency, Res 
represents the residual term, and all subsequences fluctuate around zero, which makes them easier to predict. The complexity of the 
residual term obtained by VMD decomposition is still relatively high, thus making it difficult to ensure prediction accuracy by directly 
predicting it. Therefore, there is a need for secondary decomposition. Additionally, the result of VMD decomposition indicates that the 

Table 1 
Descriptive statistics of the RV of Chinese crude oil futures.  

Mean Std. Dev Skewness Kurtosis JB Q(5) 

0.019 0.018 2.016*** 6.143 2647.373*** 189.848 

Note: This table reports the descriptive statistics of the realized volatility of Chinese crude oil futures. JB denotes the Jarque–Bera statistic, and its null 
hypothesis is that the sequence follows a normal distribution. Q(5) is the Ljung–Box statistic for up to the 5th-order serial correlation. *, **, and *** 
denote rejection of the null hypothesis at the 10%, 5%, and 1% significance levels, respectively. 
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RV of Chinese crude oil futures contains a large amount of noise. 
Table 3 shows that the subsequences obtained through VMD decomposition and the residual term after ICEEMDAN secondary 

decomposition both have relatively small standard deviations. 

Fig. 3. Time series of RV.  

Table 2 
Central frequencies of IMFs under different K values.  

K Central frequencies 

1 0.000          
2 0.001 0.172         
3 0.001 0.327 0.448        
4 0.001 0.171 0.333 0.448       
5 0.001 0.070 0.252 0.347 0.442      
6 0.001 0.163 0.287 0.374 0.439 0.489     
7 0.001 0.134 0.228 0.325 0.382 0.441 0.488    
8 0.000 0.054 0.138 0.228 0.322 0.381 0.440 0.487   
9 0.000 0.065 0.131 0.187 0.271 0.332 0.384 0.441 0.488  
10 0.000 0.056 0.109 0.166 0.226 0.287 0.336 0.385 0.441 0.488  

Fig. 4. Decomposition results of RV.  

W. Jiang et al.                                                                                                                                                                                                          



Finance Research Letters 57 (2023) 104254

7

3.3. Hyperparameter selection 

To balance computational efficiency and predictive accuracy, this article sets the LSTM model’s learning rate to 0.001 and batch 
size (mini-batch) to 32 based on the research findings of Keskar et al. (2016). In the empirical section, we employ the rolling time 
prediction method to test the predictive performance of the above model and divide each subsequence into a training set, test set, and 
prediction set following a 7:2:1 split. Then, the training set data are fed into the corresponding LSTM prediction model as input for 
training, and finally the prediction results are obtained using the testing set data. 

Different hyperparameters will affect the accuracy of the hybrid prediction model. To obtain the best prediction results for different 
component sequences, optimal hyperparameters were selected through experimentation. The optimal hyperparameter set for the 
proposed prediction model is shown in Table 4. 

3.4. Forecasting performance 

Fig. 5 shows the predicted results of the RV decomposition sequence of Chinese crude oil futures in the LSTM model. The blue 
dashed line represents the actual value, and the red solid line represents the predicted value. 

To visually compare the predictive performance of the combined model, we plot them together in Fig. 6, which shows that the 
decomposed prediction results improve the lagging problem of single LSTM prediction. Moreover, the VMD-ICEEMDAN-LSTM model 
proposed in this paper has better predictive performance for the RV of Chinese crude oil futures. 

Table 5 shows that under three evaluation indicators and different lead times, the VMD-ICEEMDAN-LSTM model has the best 
predictive performance. In the single prediction models, LSTM has better predictive performance in the short, medium and long terms 
than the HAR and ARIMA models, thus indicating that LSTM has better time series predictive capability in deep learning algorithms 
than traditional econometric models. In addition, the predictive performance of the three combined prediction models is significantly 
better than that of the single models. 

Table 3 
Descriptive statistics of the decomposition results of RV.   

Mean Std. Dev Skewness Kurtosis Q(5) 

Panel A: VMD      
IMF1 1.72☓10–8 4.80☓10–3 0.002 − 0.334*** 5353.113*** 
IMF2 1.99☓10–8 5.41☓10–3 0.002 1.814*** 1953.451*** 
IMF3 2.64☓10–8 5.37☓10–3 0.028 4.585*** 2869.072*** 
IMF4 3.55☓10–8 5.43☓10–3 1.198*** 7.794*** 2246.508*** 
IMF5 5.31☓10–8 4.55☓10–3 0.008 1.433*** 2379.843*** 
IMF6 1.11☓10–7 4.55☓10–3 0.020 0.206*** 2493.936*** 
IMF7 2.27☓10–7 4.68☓10–3 0.043 1.989*** 2558.132*** 
IMF8 9.16☓10–7 4.99☓10–3 0.213*** 0.996*** 1847.668*** 
Res 1.86☓10–2 8.79☓10–3 1.004*** 1.210*** 5709.886*** 
Panel B: ICEEMDAN      
IMF1 9.00☓10–6 2.00☓10–3 − 0.006 0.029 943.156*** 
IMF2 2.50☓10–5 1.28☓10–3 0.032 2.757*** 1002.750*** 
IMF3 9.00☓10–6 9.34☓10–4 − 0.146*** 2.772*** 1583.658*** 
IMF4 − 7.10☓10–5 2.77☓10–3 0.005 0.270*** 4171.207*** 
IMF5 − 3.24☓10–4 3.93☓10–3 0.108*** 0.615*** 5586.800*** 
IMF6 − 1.51☓10–4 2.28☓10–3 0.032 − 0.745*** 5808.612*** 
IMF7 − 5.99☓10–4 3.47☓10–3 − 0.211*** 0.224*** 5801.039*** 
IMF8 3.40☓10–5 5.53☓10–4 − 0.051 − 0.626*** 5846.810*** 
Res 1.97☓10–2 4.87☓10–3 − 0.443*** − 1.454*** 5855.489*** 

Note: Q(5) is the Ljung–Box statistic for up to the 5th-order serial correlation. *, **, and *** denote rejection of the null hypothesis at the 10%, 5%, and 
1% significance levels, respectively. 

Table 4 
Hyperparameters of VMD-ICEEMDAN-LSTM.   

VMD  ICEEMDAN   
Window Epoch Window Epoch 

IMF1 3 420 3 460 
IMF2 5 420 3 460 
IMF3 5 360 3 460 
IMF4 4 300 3 440 
IMF5 4 300 4 360 
IMF6 4 240 5 120 
IMF7 5 240 5 90 
IMF8 5 180 2 90 
Res – – 2 80 

Note: “Window” is the length of each input. “Epoch” is the number of trainings. 
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The numerical values of all results show that the VMD-ICEEMDAN-LSTM model has better performance than the VMD-LSTM 
model. This suggests that performing a secondary decomposition of the residual components obtained from VMD can effectively 
improve the predictive accuracy of the model. The reason for this is that performing a secondary decomposition of the residual 
components before prediction can greatly reduce the complexity of the original data and thus improve the overall predictive accuracy 
of the model. 

All results confirm the excellence of the VMD-ICEEMDAN-LSTM model in predicting the realized volatility of Chinese crude oil 
futures as well as its prediction stability and reliability in different time periods. 

We conducted the MCS test to verify the superiority of the VMD-ICEEMDAN-LSTM prediction model. The results of the MCS test are 
shown in Table 6. It is worth noting that the p-values of the VMD-ICEEMDAN-LSTM model under the three loss indicators are all the 
maximum value of 1 in the long, medium, and short terms. This again confirms the robustness of the proposed secondary decom-
position prediction model in improving the predictive accuracy of the realized volatility of Chinese crude oil futures. 

Fig. 5. Forecasting results of subseries of RV.  

Fig. 6. Forecasting results of RV.  
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Table 5 
Forecasting results under four loss functions.  

Models MAE MSE HMAE HMSE MAE MSE HMAE HMSE MAE MSE HMAE HMSE  

Panel A: H = 1   Panel B: H = 5   Panel C: H = 20   
LSTM 1.12☓10–2 2.64☓10–4 0.838 1.705 1.15☓10–2 2.49☓10–4 0.696 0.914 1.22☓10–2 2.76☓10–4 0.744 1.043 
ICE-LSTM 8.90☓10–3 1.49☓10–4 0.571 0.648 6.54☓10–3 7.95☓10–5 1.849 1.189 6.89☓10–3 8.18☓10–5 0.617 2.338 
VMD-LSTM 7.48☓10–3 1.10☓10–4 0.494 0.672 2.65☓10–3 1.07☓10–5 0.231 0.108 2.30☓10–3 8.43☓10–6 0.429 1.808 
VMD-EEMD-LSTM 7.27☓10–3 1.06☓10–4 0.473 0.347 2.28☓10–3 7.68☓10–5 0.191 0.080 1.72☓10–3 4.29☓10–6 0.685 2.191 
VMD-ICE-LSTM 7.23☓☓10–3 1.05☓☓10–4 0.438 0.272 2.25☓☓10–3 7.37☓☓10–6 0.191 0.079 1.70☓☓10–3 4.11☓☓10–6 0.252 0.312 
HAR 1.34☓10–2 4.00☓10–4 7.314 6.902 1.34☓10–2 4.02☓10–4 7.451 7.138 1.42☓10–3 4.46☓10–4 8.304 8.205 
ARIMA 1.16☓10–2 2.38☓10–4 2.619 5.588 1.16☓10–2 2.43☓10–4 2.679 5.762 1.23☓10–2 2.69☓10–4 2.945 6.582 

Notes: Numbers in bold imply that the corresponding model has the lowest loss function among all models. H = 1, 5, and 20 respectively represent 1 step ahead, 5 steps ahead, and 20 steps ahead. 
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3.5. Robustness test 

To ensure that robustness of the results, we perform several robustness checks in this section, including changing the sample 
frequency, changing the ratio of the training set, test set, and prediction set, and eliminating the data during the COVID-19 outbreak in 
China. 

3.5.1. Changing the sample frequency 
In this section, a replication of the research was conducted by utilizing 1-minute data intervals. The resulting findings are presented 

in Table 7. Notably, despite fluctuations in the frequency of high-frequency data, the model proposed in this paper still demonstrates 
the best performance. 

3.5.2. Changing the sample ratios 
Considering that the data proportion setting in the LSTM model may influence the prediction results, we have adjusted the pro-

portions of our training sets, testing sets, and prediction sets. The new distribution ratio is set to 6:2:2, compared to the previous 
distribution of 7:2:1. The MCS test results of the robustness check are shown in Table 8, where it can be seen that the VMD-ICEEMDAN- 
LSTM model still exhibits the best performance. 

3.5.3. Excluding the data during the COVID-19 outbreak in China 
Additionally, to enhance the reliability of the empirical research findings, we excluded data from the period during the COVID-19 

outbreak in China. The results in Table 9 demonstrate that the proposed model in this paper still outperforms all other models. 
All MCS test results thus confirm the robustness of the VMD-ICEEMDAN-LSTM model on different data sets. 

4. Conclusions 

Accurate prediction of the realized volatility of Chinese crude oil futures is of great significance for all parties involved in inter-
national energy transactions as well as the relevant policy makers. To overcome the deficiencies of the existing research on crude oil 
futures price fluctuations prediction using decomposition technology, this paper proposes for the first time a new hybrid model: VMD- 
ICEEMDAN-LSTM. 

In the existing research, although VMD performs well in enhancing the signal-to-noise ratio, some studies have overlooked the fact 
that the residual components after VMD decomposition still exhibit high complexity. As a result, directly predicting the residual 
components may affect the prediction accuracy of the model. Therefore, it is necessary to perform secondary decomposition on the 
residual components. Currently, models used for secondary decomposition such as EEMD suffer from defects that include residual 

Table 6 
Forecasting results using the MCS test.  

Forecasting model MAE MSE HMAE HMSE 
Range SeimQ Range SeimQ Range SeimQ Range SeimQ 

Panel A: H = 1         
LSTM 0.000 0.000 0.007 0.008 0.000 0.000 0.017 0.030 
ICE-LSTM 0.004 0.001 0.007 0.008 0.020 0.018 0.141 0.085 
VMD-LSTM 0.039 0.015 0.007 0.008 0.020 0.054 0.141 0.085 
VMD-EEMD-LSTM 0.097 0.097 0.072 0.072 0.020 0.054 0.141 0.085 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.007 0.007 0.000 0.000 0.017 0.003 
ARIMA 0.000 0.000 0.007 0.007 0.000 0.000 0.017 0.006 
Panel A: H = 5         
LSTM 0.000 0.000 0.005 0.004 0.000 0.000 0.002 0.003 
ICE-LSTM 0.001 0.000 0.005 0.004 0.000 0.000 0.002 0.003 
VMD-LSTM 0.006 0.005 0.005 0.004 0.002 0.003 0.002 0.003 
VMD-EEMD-LSTM 0.684 0.684 0.231 0.231 0.930 0.930 0.844 0.844 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.005 0.004 0.000 0.000 0.002 0.002 
ARIMA 0.000 0.000 0.005 0.004 0.000 0.000 0.002 0.002 
Panel A: H = 22         
LSTM 0.000 0.000 0.000 0.001 0.000 0.006 0.027 0.123 
ICE-LSTM 0.000 0.000 0.000 0.001 0.039 0.084 0.027 0.123 
VMD-LSTM 0.000 0.000 0.000 0.001 0.039 0.084 0.027 0.123 
VMD-EEMD-LSTM 0.540 0.540 0.101 0.101 0.039 0.084 0.027 0.119 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.000 0.001 0.000 0.000 0.023 0.018 
ARIMA 0.000 0.000 0.000 0.001 0.000 0.000 0.023 0.018 

Notes: The numbers in bold indicate that the corresponding models have best forecasting performance under the MCS criterion. The numbers with p- 
values larger than 0.25 are underlined. H = 1, 5, 20 respectively represent 1 step ahead, 5 steps ahead, and 20 steps ahead. Range and SeimQ 
represents range statistic, and semi-quadratic statistic, respectively (Hansen et al., 2011). 
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noise and pseudo modes, while ICEEMDAN has successfully overcome these issues and is thus a better choice. 
The empirical results first indicate that the LSTM model performs better than several traditional econometric models. Moreover, 

after the original sequence is decomposed by VMD, the fitting effect of the LSTM model for the predicted values is significantly 

Table 7 
Forecasting results under 1-minute frequencies with the MCS test.  

Forecasting models MAE MSE HMAE HMSE 
Range SeimQ Range SeimQ Range SeimQ Range SeimQ 

Panel A: H = 1         
LSTM 0.000 0.000 0.005 0.003 0.000 0.001 0.012 0.020 
ICE-LSTM 0.009 0.005 0.005 0.003 0.023 0.018 0.074 0.056 
VMD-LSTM 0.040 0.022 0.005 0.003 0.023 0.050 0.074 0.057 
VMD-EEMD-LSTM 0.088 0.088 0.121 0.121 0.023 0.050 0.074 0.057 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.005 0.003 0.000 0.000 0.012 0.006 
ARIMA 0.000 0.000 0.005 0.003 0.000 0.000 0.012 0.006 
Panel A: H = 5         
LSTM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ICE-LSTM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
VMD-LSTM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
VMD-EEMD-LSTM 0.221 0.221 0.012 0.012 0.122 0.122 0.045 0.045 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ARIMA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Panel A: H = 22         
LSTM 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.023 
ICE-LSTM 0.000 0.000 0.000 0.001 0.065 0.071 0.001 0.023 
VMD-LSTM 0.000 0.000 0.000 0.001 0.103 0.103 0.001 0.023 
VMD-EEMD-LSTM 0.029 0.029 0.067 0.067 0.033 0.071 0.274 0.274 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.007 
ARIMA 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.007 

Notes: The numbers in bold indicate that the corresponding models have best forecasting performance under the MCS criterion. The numbers with p- 
values larger than 0.25 are underlined. H = 1, 5, 20 respectively represent 1 step ahead, 5 steps ahead, and 20 steps ahead. Range and SeimQ 
represents range statistic, and semi-quadratic statistic, respectively (Hansen et al., 2011). 

Table 8 
Forecasting results under the ratio of 6:2:2 with the MCS test.  

Forecasting models MAE MSE HMAE HMSE  
Range SeimQ Range SeimQ Range SeimQ Range SeimQ 

Panel A: H = 1 
LSTM 0.000 0.000 0.008 0.002 0.000 0.000 0.001 0.003 
ICE-LSTM 0.000 0.000 0.037 0.010 0.026 0.032 0.117 0.070 
VMD-LSTM 0.193 0.119 0.037 0.020 0.070 0.066 0.001 0.008 
VMD-EEMD-LSTM 0.193 0.119 0.285 0.285 0.604 0.604 0.315 0.315 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.004 0.001 0.000 0.000 0.001 0.000 
ARIMA 0.000 0.000 0.007 0.001 0.000 0.001 0.001 0.008 
Panel A: H = 5         
LSTM 0.000 0.000 0.001 0.003 0.000 0.000 0.000 0.004 
ICE-LSTM 0.000 0.000 0.001 0.009 0.001 0.002 0.000 0.004 
VMD-LSTM 0.000 0.000 0.001 0.009 0.000 0.000 0.000 0.004 
VMD-EEMD-LSTM 0.003 0.003 0.066 0.066 0.047 0.047 0.000 0.004 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
ARIMA 0.000 0.000 0.000 0.001 0.000 0.000 0.055 0.055 
Panel A: H = 22         
LSTM 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 
ICE-LSTM 0.000 0.000 0.000 0.000 0.004 0.001 0.001 0.001 
VMD-LSTM 0.000 0.000 0.000 0.000 0.360 0.309 0.358 0.354 
VMD-EEMD-LSTM 0.000 0.000 0.000 0.000 0.360 0.336 0.737 0.737 
VMD-ICE-LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
ARIMA 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 

Notes: The numbers in bold indicate that the corresponding models have best forecasting performance under the MCS criterion. The numbers with p- 
values larger than 0.25 are underlined. H = 1, 5, 20 respectively represent 1 step ahead, 5 steps ahead, and 20 steps ahead. Range represents range 
statistic, and SeimQ represents semi-quadratic statistic. 
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improved. Then, the secondary decomposition models display better predictive ability than the VMD-LSTM model. This implies that 
secondary decomposition of the residual values of VMD can effectively improve the model’s overall predictive ability. The VMD- 
ICEEMDAN-LSTM model proposed in this paper outperforms the other models in terms of the evaluation indicators and MCS tests, 
thus demonstrating its superiority in RV prediction. 

Moreover, the test results when data from the COVID-19 period are included also confirm that the model proposed in this paper still 
has excellent predictive performance in the face of extreme conditions. 
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