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Abstract
Although previous research has provided some insights into the effects of block-based
and text-based programming modalities, there is a dearth of a detailed, multi-
dimensional analysis of the transition process from different introductory program-
ming modalities to professional programming learning. This study employed a quasi-
experimental design to address this gap, involving 64 secondary school students in two
groups. For the beginning five weeks, the first group used an introductory block-based
programming environment, while the second group used an introductory text-based
programming environment. Then, both groups transitioned to professional text-based
programming for the subsequent eight weeks. The results showed that participants
who transitioned from introductory text-based programming to professional text-
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based programming (1) significantly outperformed in computational thinking skills; (2)
had more code-writing and debugging behaviors and fewer irrelevant behaviors, and (3)
had more interactions with the instructor. No significant differences were observed
between the two groups regarding enjoyment, confidence, and interest in program-
ming. Drawing on these findings, this study proposes pedagogical implications that
could facilitate the adoption of programming modalities within the broader context of
STEM education.

Keywords
STEM education, block-based and text-based programming modality, computational
thinking skills, behavioral patterns, learning attitudes, secondary education

Introduction

Computer programming is an integral component of STEM education, encompassing
science, technology, engineering, and mathematics disciplines. Its significance lies in
developing students’ computational thinking (CT) skills (Sun et al., 2021b), enhancing
their motivation and engagement (Schnittka et al., 2015), and encouraging them to
pursue careers in computer science (Chittum et al., 2017). In primary and secondary
education, two predominant modalities have emerged: block-based programming (also
known as graphical programming) and text-based programming (Weintrop &
Wilensky, 2019). The availability of tools such as Scratch, Blockly, and App In-
ventor has facilitated the engagement of increasing young learners or beginners
worldwide in learning block-based programming. Meanwhile, recognizing the ne-
cessity of professional programming knowledge and skills as a prerequisite for entering
fields like Artificial Intelligence, educators have increasingly focused on integrating
text-based programming languages (e.g., Python, Java, C#) into secondary school
curricula and beyond (Grover, 2021; Ministry of Education, 2017).

However, regarding the transition from introductory (text-based or block-based)
programming to professional (mainly text-based) programming in K-12 school set-
tings, previous empirical research has yielded conflicting results on students’ sum-
mative performance, such as programming knowledge, computational thinking skills,
and attitudes. Some studies indicate that introductory block-based programming leads
to positive learning processes and outcomes in professional text-based programming
(Armoni et al., 2015; Grover et al., 2015; Mladenović et al., 2018), while others suggest
that introductory text-based programming is more effective than introductory block-
based programming at improving students’ programming ability (Weintrop &
Wilensky, 2017, 2019; Xu et al., 2019). In addition, few studies actually examine
how learners engage in programming practices from a process-oriented perspective.
Many open questions have not been addressed regarding the transition between
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programming modalities (Lin & Weintrop, 2021), therefore, further research is nec-
essary to conduct a detailed, multi-dimensional analysis of the transition process.

Given the above-mentioned needs, this study aimed to investigate two transitions:
(1) the transition from the learning of introductory text-based programming to pro-
fessional text-based programming (e.g., Python), namely TPP; (2) the transition from
the learning of introductory block-based programming to professional text-based
programming (e.g., Python), namely BPP. A quasi-experimental research design
was employed to examine these two transitions and their impacts on learners. Spe-
cifically, the following research questions were answered.

RQ1. What is the impact of the introductory programming modality (block-based
vs. text-based) on secondary school students’ computational thinking skills as
they transition to professional text-based programming?

RQ2. What is the impact of the introductory programming modality (block-based
vs. text-based) on secondary school students’ programming behaviors as they
transition to professional text-based programming?

RQ3. What is the impact of the introductory programming modality (block-based
vs. text-based) on secondary school students’ attitudes toward programming
as they transition to professional text-based programming?

Literature Review

Block-Based versus Text-Based Programming Modalities

Block-based programming has emerged as an accessible and intuitive to visual pro-
gramming, employing the “programming-primitive-as-puzzle-piece” technique to
simplify the programming process (Good, 2018). The rising popularity of tools such as
Scratch, Snap!, and Blockly has led to the widespread adoption of block-based pro-
gramming in primary education. In a block-based environment, program blocks can
only be connected if they form a valid statement, preventing syntax errors while
maintaining a step-by-step instruction process (Lin &Weintrop, 2021). These tools also
utilize color-coding to signify different programming concepts and nested structures to
indicate block scope (Maloney et al., 2010). Block-based programming’s user-friendly
nature has made it appealing to novice learners globally. For instance, Code.org’s
“Hour of Code” features numerous block-based programming activities, with over
100 million participants from more than 180 countries (HourofCode, 2023). Fur-
thermore, block-based programming is increasingly integrated into primary school
curricula, specifically in information technology courses (Ministry of Education, 2017).

In contrast, text-based programming necessitates learners to input command lines
and is a prevalent method in secondary programming education and beyond, especially
for secondary students with a firm grasp of syntax and text-based code logic (Yücel &
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Rızvanoğlu, 2019). Common professional text-based programming languages include
Python, C++, and Java. Text-based programming allows learners to attain advanced
programming expertise, engage in professional projects (Weintrop & Wilensky, 2019),
and access more robust and realistic features (Weintrop & Wilensky, 2015).

With the development of different programming modalities, researchers have
gradually focused on the differences between block-based programming and text-based
programming. Kölling et al. (2015) identified 13 key distinctions between block-based
and text-based programming, such as code readability, code memory, syntax memory,
typing/spelling, command line quantity, prototypes and definitions, identifiers (e.g.,
variables), scopes, written expressions, data types, error reporting, code layout, and
programming paradigms. Researchers have acknowledged that text-based program-
ming cannot be supplanted by block-based programming. Instead, text-based pro-
gramming languages are often designed as learning objectives for students who have
mastered block-based programming languages (Xu et al., 2019).

In block-based programming, students do not need to learn the syntax of a specific
programming language in advance, which reduces the cognitive load of elementary and
secondary school students and allows them to focus more on the structure of the code
(Hu et al., 2021; Sayginer & Tuzun, 2023). However, according to Weintrop and
Wilensky (2019) research, block-based programming was seen by students as lacking
authenticity and being less powerful, which was more likely to impact older students
keen to develop transferable skills for potential employment or future computer science
studies.

Research on the Transition across Different Programming Modalities

The increasing popularity of block-based programming in formal educational settings
has driven research efforts to examine its effectiveness in preparing learners for
professional text-based programming in the future. Early studies identified that, despite
success in block-based programming, learners often faced challenges when tran-
sitioning to text-based programming (Scholtz & Wiedenbeck, 1990). Recent scholars
continue to investigate the obstacles encountered by learners during this transition,
revealing that experiences in block-based programming do not automatically transfer to
text-based programming (Grover, 2021; Lin & Weintrop, 2021). Hsu and Gainsburg
(2021) revealed that the block-based environment used in introductory programming
courses did not offer an advantage in preparing students for learning a text-based
programming language (Java). According to Saygıner and Tüzün’s (2023) research, the
implementation of a block-based environment in programming training had a positive
impact on the development of students’ logical thinking skills and motivation to learn
programming. However, the study found no significant differences in programming
success between students who received this training and those who did not. Espinal
et al. (2022) also found that most students were capable of transitioning between block-
based and text-based programming languages, yet many struggled with interpreting
programs and addressing new challenges in text-based environments.
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These findings suggest that block-based programming tools can enhance learners’
attitudes toward programming education, but their influence on overall learning
performance remains inconclusive (Lin & Weintrop, 2021; Xu et al., 2019). Fur-
thermore, the majority of prior research has examined the comparative effects of block-
based and text-based programming at different stages of learning, with few studies
exploring the impact of these experiences on secondary school students’ professional
programming (such as Python) skills through quasi-experimental methods (Weintrop &
Wilensky, 2019). Consequently, the potential benefits of block-based programming
experiences for professional text-based programming remain uncertain.

Influential Factors on Learning Across Varied Programming Modalities

Empirical research suggests that the transition from introductory to professional
programming could have an impact on several aspects of learners’ experience, in-
cluding their CT skills, level of engagement, and attitudes towards programming.
Firstly, computational thinking entails utilizing basic computational concepts and
methods to scrutinize and solve problems (Wing, 2006). The transitions from block-
based to text-based programming can have a considerable impact on the development
of CT skills. According to Tabet et al. (2016), students who transitioned from block-
based to text-based programming witnessed enhancement in their CT skills, in contrast
to those who solely received text-based programming instruction. Similarly, Espinal
et al. (2022) discovered that exposure to block-based programming aided students in
developing CT skills such as decomposition, while text-based programming in their
algorithm design skills. Hence, when assessing the efficacy of transition between
different programming modalities, the advancement of CT skills is a crucial
consideration.

Secondly, as programming necessitates cognizant problem-solving, meaning-
making, and construction of knowledge (Sun et al., 2021a), empirical research has
undertaken the analysis and demonstration of various facets of block-based and text-
based programming processes. For instance, Schnittka et al. (2015) demonstrated that
middle-school students manifested increased engagement and motivation toward
programming through the introduction of block-based programming languages.
Weintrop andWilensky (2015) discovered that block-based programming strengthened
novice programmers’ debugging abilities. Similarly, according to Xu et al. (2019),
block-based programming aided learners in improving their coding habits, including
the ability to write concise and readable code.

Finally, the modalities of programming instruction can have an impact on attitudes
toward programming. Chittum et al. (2017) found that introducing Python pro-
gramming to high school students improved their attitudes toward programming and
careers in computer science. Furthermore, Wang (2021) found that female students’
attitudes toward programming were more positive when they learned through a block-
based programming language, as opposed to a text-based programming language.
Taken together, an essential aspect of investigating the efficacy of programming
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modality transition is the examination of learners’ CT skills, programming behaviors,
and attitudes toward programming.

Methodology

Context and Participants

The research context was a formal course titled “Creative Programming Algorithms”,
which took place during Autumn 2021 in a secondary school located in the Eastern area
of China. A total of 64 students from two first-grade classes at the secondary school
were recruited in this study, after obtaining consent from both the school and the
students. The Review Committee’s written agreement was obtained to interact with and
collect data for research purposes without ethical issues. The students, with no formal
text-based or block-based programming learning experience, were instructed by the
same teacher (the first author of this paper).

The 64 participants came from two natural classes were divided into two groups.
Over a period of five initial weeks, the first group interacted with an introductory block-
based programming environment (BPP group: 32 students, 20 boys, and 12 girls). This
group was designated as the control group, as it was consistent with the default en-
vironment in the secondary school setting. While the second group engaged with an
introductory text-based programming environment (TPP group: 32 students, 17 boys,
and 15 girls), establishing the experimental group for this study. Then, both groups
transitioned to professional text-based programming instruction with Python.

Course Design

The instructional sessions for introductory text-based and block-based programming
were based on Bau’s (2013) book, where they provided 26 projects covering basic to
deep knowledge of coding concepts such as lines, points, loops, events, sorting, and
searching. Additionally, the book showcased 17 elaborated examples including running
pencil code, strings/numbers, using “if” to choose, etc. The instructor adjusted the
instructional content and procedures to suit the programming abilities of local students.
The instructional content included starting the art of drawing, using for and while loops
to draw, implementing if statements to guess numbers, and utilizing functions to create
both basic and advanced starry night drawings. For the professional text-based pro-
gramming instruction, the sessions were based on the Information Technology textbook
for secondary students (Zhejiang Provincial Department of Education and Research
Office, 2019). The instructional content comprised getting started with Python, data and
operations, sequential structures in Python, if structures in Python, loop structures in
Python, and Python Programming with functions.

This study was conducted on two programming platforms (Code4all, and Py-
Charm). In the introductory text-based and block-based programming phases, learners
were taught and practiced on the Code4all platform. The platform’s backend server was
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built using Node.js web architecture and express, while the front end was developed in
JavaScript with custom messaging middleware. The modules collaborated and passed
information entirely through events. Additionally, the platform uses jQuery Turtle to
draw graphics and can support the block-based or text-based presentation of the
programming language CoffeeScript (see Figure 1(a)), which has a ‘light syntax’
property that makes it more suitable for beginners to learn introductory programming
(CoffeeScript, 2023).

In the block-based programming interface (see Figure 1(b)), learners can drag
and drop programming blocks and auto-link them, while in the text-based pro-
gramming interface (see Figure 1(c)), learners need to write programs by entering
code character by character. Both interfaces have the same functionality, except for
the different presentation of the programming language, including the keywords
and syntax of the programming language, the visual execution environment, and
other platform features such as login, new, save, delete, and other operations.
Code4all does not allow learners to switch between the two modalities. Instead,
learners are required to use either the block-based interface or the text-based in-
terface exclusively.

During the professional text-based programming instruction phase, this study used
PyCharm as the Integrated Development Environment (IDE) in the course. The main
reason for adopting this platform is that it supports the writing of Python language (see
Figure 2). By developing relevant tools, the researcher could use this platform to

Figure 1. Code4all Platform Interfaces. (a) Interface of the Code4all platform. (b) Interface of
the block-based programming (c) Interface of text-based programming.
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automatically capture learners’ programming learning behavior, which laid the nec-
essary foundation for the study.

Analytical Framework

As demonstrated in Figure 3, the research proposed an analytical framework to in-
vestigate the differences between TPP and BPP from the process and summative
perspective, which was adapted from Sun et al. (2021b). From the perspective of
process-oriented assessment, research can gather behavioral data by recording in-class
behaviors and programming activities through classroom video recordings and
learners’ programming operations through log data or computer screen recordings.
Classroom video analysis, clustering analysis, and temporal analysis can be applied to
analyze behavioral data. Furthermore, recordings of classroom audio have the potential
to capture discussions that take place between students and teachers during class. These
recordings can be analyzed using quantitative content analysis, lag-sequential analysis,
and ethnographic interpretations to explore discourse patterns and features. With re-
gards to summative assessment, data on programming knowledge and skills (e.g., pre-,
mid-and post-tests) and final products (e.g., programming projects) can be gathered as
performance data, and statistics can be used to explore the significance of performance
changes. Moreover, learners’ attitudes toward various programming modalities can be
better understood by collecting data from surveys conducted from pre-, mid-, and post-
surveys. Taken together, this analytical framework provides a comprehensive approach
to both the process and final assessments of different programming modalities.

Data Collection

This study collected data from four sources. First, we conducted pre- and post-test of
learners’ computational thinking skills. The questionnaire used a validated compu-
tational thinking scale (5-point Likert scale) for Chinese K-12 students adapted from
Bai and Gu (2019) based on Korkmaz et al. (2017).

Figure 2. PyCharm platform interface.
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Second, we collected data on learners’ programming behaviors from two aspects.
On the one hand, we recorded students’ online programming behaviors through
programming platform log data. By modifying the helper’s file of the PyCharm
platform, the debugging information generated by each student’s click on the “debug”
button is transferred to the cloud server for storage in the form of time stamps. The
stored data includes “operation time, written code, operation result, error message, etc.”
On the other hand, we recorded students’ offline programming behaviors (90 minutes in
total) through a whole class video recording.

Finally, this study conducted pre-, mid-, and post-tests in three phases of the ex-
periment to investigate changes in students’ attitudes, which include self-confidence,
enjoyment, and interest. The survey was adapted from the Georgia Computes project
(Bruckman et al., 2009) and the Computing Attitudes Survey, which were validated
from previous research (Sun et al., 2021b). The survey includes five items on a 10-point
Likert scale ranging from 1 (strongly disagree) to 10 (strongly agree). Please refer to
Appendix A.

As illustrated in Figure 4, the study lasted for 16 weeks, with one class period of
40 minutes per week. In the first week, students were acclimated to the programming
environment and were administered a pre-test of CT and learning attitudes. In the
seventh week, students took a mid-test of CT and learning attitudes along with a
programming project. During the eighth to 15th week, both sets of students were taught
Python programming. In the 16th week, students underwent a post-test of CT and
attitudes, and complete a programming project.

Data Analysis

First, analysis of variance (ANOVA) was used to compare the differences in CT skill
levels among pre-, mid-, and post-test, and one-way analysis of covariance

Figure 3. Analytical framework.
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(ANCOVA) methods was applied to compare the post-test computational thinking
skills between the two groups. These data analyses were conducted using
SPSS 25.0.

Secondly, to explore programming behavior differences between the two groups,
this study collected and analyzed learners’ online (2313 lines of log data) and offline
(class video lasting 40 minutes) programming behaviors. Based on previous re-
search (Pereira et al., 2020) and the data types of programming platform log files,
this study identifies the coding types based on programming operation data (see
Table 1), which are average line of code written (ACo), average lines of code
changed (ACh), number of platform operations (NPo), number of debugging (ND),
number of syntax errors (NSe), average time between two debugging (AtD), and
average irrelevant on irrelevant behavior (AIb). The two coders then coded the data
again independently in chronological order based on the coding framework, with a
rater reliability of .890.

For the log data recorded by the programming platform, the study analyzed the
descriptive statistics and then conducted a clustering analysis (Dutt, 2015). Clustering
algorithms can discover hidden patterns in complex datasets, and new relationships in
educational data can be mined through unsupervised learning methods (Dutt et al.,

Figure 4. Experimental design.
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2017). Based on the fact that learners’ behaviors are heterogeneous, this study clustered
learners based on the data recorded in the platform logs to explore the programming
learning behavior patterns of different learner clusters. In addition, the study used the
K-means algorithm, which derives N observations among a predetermined number of K
clusters, where each observation belongs to the nearest group mean (MacQueen, 1967),
and then uses the average profile coefficient of the observations to select the most
appropriate number of clusters (Rousseeuw, 1987). Log data analysis was conducted
using RStudio 2022.

In addition, we used classroom video analysis (Kersting, 2008) to analyze the video data
to identify behavioral differences between the two classes during the programming learning
process. Two coders first watched the whole-class video recordings separately to determine
the initial coding of classroom behaviors and then engaged in a discussion to determine the
final coding framework (see Table 2). The following six programming learning behaviors
were included: operating on the computer (OoC), discussion with peers (DwP), asking
questions to the instructor (AsQ), listening to the instructor (LtI), irrelevant behaviors (IB),
and walking around (WR). The two coders then coded the data again independently in
chronological order based on the coding framework, with a rater reliability of .870.
Students’ behaviors were reported in a summative way and further demonstrated in a
temporal graph. Temporal analyses were conducted using RStudio.

Finally, regarding the difference in attitudes, the Wilcoxon Rank Sum test (reported
as a U statistic) was performed to reveal the differences in learners’ attitudes in terms of
confidence, enjoyment, and future interest between the two groups. This test was used
because the two samples are independent, and the underlying data is ordinal and non-
parametric (Fay & Proschan, 2010).

Table 1. The Coding Framework of Learner’s Online Programming Behaviors.

Code Behavior Description

ACo Average number of codes
written

The average number of lines of code written by the learner
between two clicks of the debug button.

ACh Average number of
changes

The average number of lines of code the learner modified
between two clicks of the debug button.

NPo Number of platform
operations

The number of actions the learner took on the platform (e.g.,
login, save, new, etc.).

ND Number of debugging The total number of times the learner clicked the debug
button.

NSe Number of syntactical
errors

The number of syntax errors made by the learner during
programming.

AtD Average time between
two debugging

The average time (in seconds) that the learner spends
between clicks on the debug button.

AIb Average time on irrelevant
behavior

The average amount of time (in seconds) the learner spent
on unrelated actions during coding, such as playing games,
idle actions, etc.

Sun et al. 11



Results

Results Regarding Computational Thinking Skills

We present the results of learners’ computational thinking skills at the pre-, mid-, and
post-tests under two modalities (see Table 3). The learners in the BPP group had mid-
test scores significantly higher than their pre-test and post-test scores on the CT skill
level (F = 5.55, p < .01). In contrast, TPP learners had significantly higher post-test CT
scores than mid-test (F = 2.89, p < .05) scores.

This study conducted an ANCOVA to compare the CT kills of learners under the
BPP and TPP modalities. The study accepted the modality used for introductory
programming instruction (block-based vs. text-based) as a fixed factor, with CT pretest
scores as covariates and CT posttest scores as dependent variables. As shown in
Table 4, after excluding the effect of the pretest, learners in the BPP and TPP groups
showed significant differences in computational thinking skills (F = 5.47, p < .05,
eta2 = .08).

Results Regarding Programming Behaviors

Log Data: Online Programming Behaviors. Table 5 shows the distribution of learners’
online programming behaviors recorded by the log data in PyCharm. Compared to the
TPP group, learners in BPP had more behavior of code-changing (Ach, MBPP = 3.83,
SDBPP = 2.80;M TPP = 2.64, SD TPP = 2.13), longer debugging intervals (AtD,M BPP =
356.75, SD BPP = 416.14;M TPP = 266.70, SD TPP = 276.74) and more than three times
the number of irrelevant behaviors (AIb,M BPP = 21.25, SD BPP = 17.90;M TPP = 6.50,
SD TPP = 6.34). In addition, learners in TPP had longer lines of code (ACo, M BPP =
19.88, SD BPP = 6.97;M TPP = 22.67, SD TPP = 2.50), more platform operations (NPo,M

BPP = 6.75, SD BPP = 4.22; M TPP = 9.00, SD TPP = 5.02), more errors (NSem, M BPP =
4.31, SD BPP = 2.65;M TPP = 6.59, SD TPP = 7.68), and a greater number of debugging
(ND, M BPP = 5.72, SD BPP = 3.27; M TPP = 7.40, SD TPP = 7.91).

Table 2. Coding Framework of Learners’ Offline Programming Behaviors.

Code Behavior Behavior description

OoC Operating on the
computer

Learners are doing it on the computer by themselves.

DwP Discussing with peer Learners are having a discussion with their peers.
AsQ Asking questions Learners asking questions to the teacher.
LtI Listening to the

instructor
The learner is listening to the instructor’s explanation.

IB Irrelevant behaviors The learner is exhibiting unrelated behaviors (fiddling with the
computer, etc.).

WR Walk around The learner is walking around the classroom.
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The results of clustering showed that the K-means converged in the 10th iteration,
with a K value equal to 5 being the best value and the corresponding highest mean
profile coefficient (.59). As shown in Table 6, 17.18% of the participants were assigned
to Cluster 1 (C1), 6.25% to Cluster 2 (C2), 28.13% to Cluster 3 (C3), 46.88% to Cluster
4 (C), and 1.56% to Cluster 5 (C5).

To examine the differences in the level of CT skills across five clusters, an
ANOVA was conducted (see Table 7). Overall, there were statistically significant
differences in CT levels among the five clusters (F = 2.641, p < .05), with cluster
2 performing significantly better than Cluster 3 and Cluster 5; Cluster 4 performed
significantly better than Cluster 5. Besides, Cluster 4 performed significantly better
than Cluster 3.

Looking into the programming behaviors of the high-performing clusters, the
4 members in Cluster 2 (2 learners for BPP and 2 learners for TPP) had an average
level of programming behaviors. The 29 members in Cluster 4 (10 learners for
BPP and 19 learners for TPP) used the “trial and error” or “tinkering” strategy, as
they showed the greatest number of debugging behaviors (ND: M = 7.80, SD =
2.61) and the least number of code-modifying behaviors (ACh: M = 2.40,
SD = 1.09).

Similar to learners in Cluster 4, the 11 members in Cluster 1 (4 learners for BPP and
7 learners for TPP) had intensive debugging behaviors, as they showed the shortest
debugging interval (AtD:M = 42.08, SD = 42.46). However, they also showed the least
number of code-writing (ACo:M = 20.20, SD = 6.73) and the greatest number of errors
(Nse: M = 6.91, SD = 10.54), which lead to slightly lower performance in CT.

Table 3. Distribution and ANOVA Results of Learners’ Computational Thinking Skills.

Group N

(1) Pre-
test

(2) Mid-
test

(3) Post-
test

F Significant comparisonM SD M SD M SD

BPP 32 3.91 .37 4.23 .53 3.91 .36 5.55** (2) > (1); (2) > (3)
TPP 32 3.90 .52 3.79 .75 4.15 .47 2.89* (3) > (2)

Note. *p < .05; ** p < .01.

Table 4. ANOVA Results of Learners’ Computational Thinking Skills.

Group N

Pre-test Post-test
One-way
ANCOVA

F eta2M SD M SD M(adjusted) SE

BPP 32 3.91 .37 3.91 .36 3.91 .07 5.47* .08
TPP 32 3.90 .52 4.15 .47 4.15 .07

Note. p*< .05.

Sun et al. 13



T
ab

le
5.

D
is
tr
ib
ut
io
n
of

Le
ar
ne
rs
’
O
nl
in
e
Pr
og
ra
m
m
in
g
Be

ha
vi
or
s.

N
A
C
o

A
C
h

N
Po

N
D

N
Se

A
tD

A
Ib

BP
P

32
19

.8
8
±
6.
97

3.
83

±
2.
80

6.
75

±
4.
22

5.
72

±
3.
27

4.
31

±
2.
65

35
6.
75

±
41

6.
14

21
.2
5
±
17

.9
0

T
PP

32
22

.6
7
±
2.
50

2.
64

±
2.
13

9.
00

±
5.
02

7.
40

±
7.
91

6.
59

±
7.
68

26
6.
70

±
27

6.
74

6.
50

±
6.
34

14 Journal of Educational Computing Research 0(0)



T
ab

le
6.

C
lu
st
er
in
g
of

Le
ar
ne
rs
’
O
nl
in
e
Pr
og
ra
m
m
in
g
Be

ha
vi
or
s.

C
lu
st
er

N
A
C
o

A
C
h

N
Po

N
D

N
Se

A
tD

A
Ib

C
1

11
(1
7.
18

%
)

20
.2
0
±
6.
73

4.
07

±
2.
90

8.
39

±
2.
51

7.
64

±
10

.5
8

6.
91

±
10

.5
4

42
.0
8
±
42

.4
6

4.
04

±
2.
71

C
2

4
(6
.2
5%

)
21

.6
3
±
.7
4

3.
38

±
1.
47

7.
94

±
1.
07

2.
25

±
.4
3

2.
25

±
.4
3

92
5.
38

±
15

1.
99

3.
92

±
2.
53

C
3

18
(2
8.
13

%
)

20
.7
7
±
1.
36

3.
50

±
.8
4

6.
75

±
2.
35

5.
07

±
1.
31

4.
28

±
1.
09

39
5.
01

±
71

.9
0

9.
01

±
10

.9
4

C
4

29
(4
6.
88

%
)

21
.8
2
±
4.
70

2.
40

±
1.
09

8.
32

±
3.
61

7.
80

±
2.
61

6.
16

±
2.
42

22
5.
77

±
45

.2
4

3.
88

±
3.
56

C
5

2
(1
.5
6%

)
24

.5
0
±
.0
7

14
.0
0
±
.1
2

9.
00

±
.2
3

2.
00

±
.0
0

2.
00

±
.0
0

19
03

±
50

.1
3

.0
2
±
.0
7

Sun et al. 15



For the relatively lower-performing groups, Cluster 3 had 18 members
(15 learners for BPP and 3 learners for TPP) who had the least number of oper-
ational (NPo: M = 6.75, SD = 2.35) behaviors, but had the greatest number of
irrelevant (AIb: M = 9.01, SD = 10.94) behaviors. Lastly, Cluster 5 had 2 members
(both members are BPP learners), and they had the highest number of code writing
(ACo:M = 24.50, SD = .07), code modifying (ACh:M = 14.00, SD = .12), platform
operation (NPo: M = 9.00, SD = .23), and had the longest debugging interval (AtD:
M = 1903, SD = 50.13).

Class Video: Offline Programming Behaviors. In terms of offline programming behaviors
during the course (see Figure 5), in the introductory programming period, BPP learners
were more focused on operating computers (OoC; frequency = 347) and peer dis-
cussions (DwP; frequency = 274) but showed limited interactions with the instructor
(AsQ; frequency = 35, LtI; frequency = 160). More casual walking behavior (WR;
frequency = 136) occurred in the following professional text-based programming
learning period. In comparison, learners in the TPP group also focused on their
computer operations (OoC; frequency = 380) during the introductory instruction period
and had more interactions with the instructor (AsQ; frequency = 117, LtI; frequency =
318) and discussions with peers (DwP; frequency = 221).

Results Regarding Attitudes

As shown in Figure 6, this study analyzed three aspects of students’ attitudes on the three
administrations (pre-, mid-, and post-tests): confidence, enjoyment, and interest. In terms of
confidence, both BPP and TPP showed a trend of decreasing, with the mean level of BPP
learners slightly higher than that of TPP learners from beginning to end. However, there
was no statistically significant difference between the scores of the two groups in the post-
test (U = 424.50, p > .05). Similarly, learners’ enjoyment in both BPP and TPP did not show
a significant difference between the two groups in the post-test (U = 459.00, p > .05). Both
groups experienced a decrease in engagement first and then a slight increase. Regarding
interest, there was no statistically significant difference in learners’ scores on the post-test
interest score either (U= 415.50, p> .05). The two groups appeared to have different trends:
Learners in the BPP experienced a trend of increasing and then decreasing, while learners in
the TPP maintained a more stable level of interest.

Table 7. ANOVA Results of Five Clusters’ Computational Thinking Skills.

C1 C2 C3 C4 C5 F Significant comparison

4.05 ± .55 4.44 ± .43 3.84 ± .45 4.09 ± .33 3.60 ± .02 2.641* C2>C3
C2>C5
C4>C3

Note. *p < .05.
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Discussions

As one area of STEM education, computer programming focuses on fostering learners’
computational thinking skills, learning motivations and interests in programming, as
well as programming engagement (Grover, 2021; Sun et al., 2021b; Wakhata et al.,
2022). This study explored the transitions from two introductory programming

Figure 5. The Temporal Graph of Learners’ Classroom Behaviors. (a) BPP. (b) TPP. Note. The
x-axis represents the time period; the y-axis represents classroom behaviors.
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Figure 6. Changes of learners’ Confidence (a), Enjoyment (b), and Interest (c).
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modalities, namely text-based and block-based programming, to professional text-
based (Python) programming in secondary education in China. The computational
thinking skills, programming behaviors, and programming attitudes of 64 participants
were collected and analyzed.

The results found that, compared with learners who began with introductory block-
based programming, those who transitioned from introductory text-based programming
to professional text-based programming outperformed in CT skills. This study found
that although block-based programming improved learners’ levels of CT skills during
the introductory programming period, the improvement was less likely to persist in the
learning of professional programming (Python). The findings are aligned with previous
research (Mladenović et al., 2018), suggesting that block-based programming tools
may offer some features to simplify programming complexity and impart certain logical
and structural concepts, whereas they have a minor impact on learners’ ability to learn
professional programming learning. In contrast, learners who were taught with in-
troductory text-based programming are better equipped to learn Python and demon-
strate stronger CT skills due to the smooth transition between introductory and
professional text-based programming languages (Weintrop & Wilensky, 2019), and
Espinal et al. (2022) also found, as the students advanced through the lesson plans, their
progress in transition tasks improved due to the enhancement of their initial CT
abilities.

Regarding programming behaviors, learners in the BPP group showed a greater
number of code-modifications, which could be attributed to the various assistive
features provided by the block-based programming environment (Grover & Basu,
2017). Learners in the BPP group also had longer debugging intervals and displayed
over three times the number of irrelevant behaviors. This suggests that although block-
based languages could reduce the difficulty in coding for beginners (Mladenović et al.,
2018), it run the risk of leading to more behaviors unrelated to programming. In
contrast, students in TPP showed more code-writing and debugging behaviors. We
infer that after transitioning to Python, learners in the TPP group became more
comfortable with a text-based programming language and engaged in more debugging
behaviors when they encountered syntax errors. While learners in the BPP group took
longer to adapt to the Python language and made more changes to their codes, resulting
in fewer debugging behaviors.

Based on the results of clustering analysis, learners in Cluster 3 who had many
irrelevant behaviors and fewer operations of the programming platform under-
performed in the CT test, from which we can conclude that irrelevant behaviors or
cognitive absence are one of the barriers to developing CTskills through programming.
Consistent with prior research (Fields et al., 2021; Hwang et al., 2012), Cluster 5, which
performed lower in CT had the least number of debugging behaviors, which suggested
that students could benefit from continuous debugging and modification of codes.
Without testing their codes and detecting bugs in the codes, learners can hardly develop
CT skills through the problem-solving process. Additionally, most learners in Cluster
3 and Cluster 5 were from the BPP group. We can infer that instructors should monitor
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the progress of learners with block-based languages and provide timely support (e.g.,
process-oriented scaffoldings) in the introductory instruction stage (Sun et al., 2021b).

Meanwhile, the analysis of offline behaviors through class videos indicated that
students in BPP displayed fewer interactions with the instructor. One possible ex-
planation is that students who have worked with block-based programming may have
developed the habit of exploring code blocks independently through drag and
drop. Therefore, when students transition from introductory block-based languages to
more complicated professional text-based languages, instructors need to increase their
communication with them (Sun et al., 2021a). This includes the provision of com-
prehensive code explanations, monitoring students’ advancement, addressing their
queries, and undertaking similar supportive measures.

Moreover, the obtained results revealed no statistically significant difference be-
tween learners in the BPP and TPP groups concerning their confidence, enjoyment, and
interest. This finding contradicts previous arguments that emphasized the positive
impacts of block-based programming on motivation, attitudes, and engagement for K-
12 learners (Grover, 2021; Hu et al., 2021; Saygıner & Tüzün, 2023). However, this
finding echoes studies investigating transition effect of different programming mo-
dalities. For instance, Hsu and (2022) found that, compare with Java-only group,
students with introductory block-based programming experience felt less confident in
later Java course. Likely,Weintrop and Wilensky (2019) conducted a study comparing
transitions between different modalities and found no significant differences in con-
fidence and enjoyment across the conditions. The absence of a significant difference
suggests that the increased positive attitudes observed in previous studies employing
block-based tools may be more influenced by the curriculum employed or the con-
textual factors surrounding learners’ programming experiences, rather than the pro-
gramming modality itself (Lin & Weintrop, 2021). Another potential factor
contributing to these results could be the age range of the research participants. Given
the developmental aspects of metacognition among high school students in Weintrop
and Wilensky’s (2019) study, they may exhibit different patterns in attitudes compared
to secondary students in this study.

Overall, despite prior claims by researchers regarding the potential benefits of block-
based programming for fostering a favorable initial learning encounter, this study
reveals that individuals who were exposed to introductory text-based programming
exhibited a higher degree of consistency and fluidity during their progression towards
professional text-based programming in Python. Learners in the TPP group demon-
strated superior computational thinking abilities, displayed a greater propensity for
desirable programming-related behaviors, and exhibited comparable levels of attitudes
toward programming when compared to their block-based programming counterparts.

Pedagogical Implications

Based on the results, this study proposes three pedagogical implications for future
instructional design of programming education in secondary school. Firstly, to continue
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learning professional programming languages, text-based programming is a more
beneficial modality in introductory programming instruction. In other words, teachers
could select appropriate programming modalities based on specific goals of pro-
gramming education. To do this, teachers should specify the learning goals and
consider whether students will transition to professional text-based programming
languages such as Python or pursue a programming-relevant career in the future.
According to Weintrop and Wilensky (2019), for educator who has doubts about the
authenticity of block-based tools or recognizes the pedagogical benefits of having
learners write programs from the beginning, it could be more suitable to introduce
learners to a text-based language instead of a block-based one.

Secondly, teachers could provide different scaffoldings for learners with different
programming learning experiences. On the one hand, this study shows that block-based
programming could help learners reduce the likelihood of encountering syntax errors
compared to text-based programming, but learners may exhibit more irrelevant be-
haviors during the learning process. Grover and Basu’s research (2017) also found that
students in block-based environments may face challenges in fully understanding
fundamental programming concepts and the flexibility of manipulating data due to the
absence of variable and data type usage. Therefore, when dealing with learners who
have experience with block-based programming, teachers should provide more in-
structional interventions and support on learning strategies, such as providing explicit
task lists, incorporating gamified learning strategies (Mladenović et al., 2018), en-
gaging students in functions-describing activities (e.g., loop iterations), promoting the
practice of choosing appropriate variable names, and consistently assessing students’
comprehension of constructs and concepts with ongoing evaluations (Grover & Basu,
2017).

On the other hand, text-based programming learners wrote longer lines of code,
spent more time debugging, and encountered more syntax errors. They showed limited
creativity in solving problems because they relied mainly on the teacher’s examples
(Pereira et al., 2020). Therefore, educators can foster learners’ engagement in code-
writing and debugging by leveraging their experience with text-based programming.
They can offer additional support through scaffolding techniques for error correction
strategies. This might involve equipping students with a compilation of typical de-
bugging errors (Žanko et al., 2023), compiling syntax errors commonly encountered
during early programming practices, and distributing them to learners through feedback
charts or tables. Furthermore, the adoption of innovative approaches in text-based
programming can enhance learning experiences. For example, Kölling et al. (2015)
suggest frame-based editing as a method that combines the error resistance and user-
friendliness of block-based programming with the flexibility and conventional pro-
gramming semantics inherent in text-based programming languages.

Thirdly, teachers should also consider learners’ emotional feedback during the
learning process. This study found that learners in both programming modalities
showed decreased enjoyment and confidence levels when they faced programming
challenges. Therefore, teachers could be attentive to learners’ emotional fluctuations
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and offer timely feedback to help adjust their attitudes and learning strategies ac-
cordingly (Jeon & Song, 2019). Throughout the instructional process, teachers have the
opportunity to tailor the difficulty level of materials according to learners’ program-
ming experience, use diverse learning strategies like peer communication support (Sun
et al., 2021a), and provide verbal or behavioral encouragement to foster positive at-
titudes towards programming learning (Sherin, 2001).

Conclusions, Limitations, and Future Directions

This research aimed to investigate how transitioning from introductory text-based or
block-based programming to professional text-based programming (i.e., Python) in-
struction affects learners’ computational thinking skills, programming learning be-
haviors, and learning attitudes. The study involved 64 secondary school students as
experimental subjects. The findings indicated that learners who transitioned from
introductory block-based programming instruction to Python showed higher levels of
computational thinking skills than those who transitioned from introductory block-
based programming instruction. On the other hand, learners who transitioned from
introductory text-based programming to Python showed more code-writing and code-
debugging behaviors and fewer irrelevant behaviors. The study suggests that intro-
ducing learners to introductory text-based programming can be more beneficial for
formal education scenarios in secondary schools, where the primary learning goal is to
teach professional text-based programming in the future. However, introductory block-
based programming can be more suitable for learners who use programming skills to
develop comprehensive skills like logical thinking. These findings offer evidence to
support the use of either block-based or text-based programming instruction in sec-
ondary school settings.

Nonetheless, this study has a few limitations. Firstly, the assessment of compu-
tational thinking relied primarily on self-reported questionnaires completed by stu-
dents, introducing the possibility of bias due to inaccurate comprehension and
interpretation of the questionnaire items. Future research should assess learners’
computational thinking through knowledge tests and fine-grained examination of their
programming learning behaviors. Secondly, though the sample size of 64 participants
was appropriate, all participants in this study were recruited solely within the context of
secondary education in China. A larger and more diverse sample would provide more
statistical power and enhance the robustness of the results.

Thirdly, the study’s duration was relatively brief, encompassing only 16 weeks and
16 instructional sessions, leading to limited insight into the lasting effects of block-
based or text-based programming on learners. Due to technical constraints, the analysis
of data relied heavily on manual coding, preventing the utilization of alternative
methods. Future research should focus on gathering multimodal data over an extended
timeframe to gain a more comprehensive understanding of learners’ long-term changes
resulting from transitions between different modalities. This could involve incorpo-
rating various data types such as audio/video recordings, clickstream data, facial
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expressions, motion and gesture analysis, and eye-tracking data. A mixed-method
approach has the potential to provide more meaningful and robust results, which could
be incorporated in future research. Moreover, the development or implementation of
automated data analysis tools and the execution of longer-term experimental studies
would significantly enhance a more comprehensive evaluation.

Overall, as the essence of programming lies in its process, future research and
practices must integrate both block-based and text-based programming approaches and
adopt a process-oriented perspective in investigating, advancing, and evaluating
learners’ programming quality. This research represents a significant step forward in
conducting a comprehensive analysis of learners’ performances, processes, and atti-
tudes in computer programming education within the context of compulsory secondary
education in China. Furthermore, this study has the potential to contribute to the global
adoption of programming modalities, particularly in the broader realm of STEM
education.

Appendix A

Attitudinal Survey

1. I will be/am good at programming.
2. I will be doing well/did well in this course.
3. I like programming.
4. I am excited about this course/I was excited about this course.
5. I might take more programming courses in the future/I plan to take more

programming courses in the next semester.
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