报告时间:2022年10月18日 14:00
地点:腾讯会议(569-164-316)
报告内容:
It is know that the non-autonomous differential equations dx/dt=a(t)+b(t)|x|, where a(t) and b(t) are 1-periodic maps of class C^1, have no upper bound for their number of limit cycles (isolated solutions satisfying x(0)=x(1)). We prove that if either a(t) or b(t) does not change sign, then their maximum number of limit cycles is two, taking into account their multiplicities, and that this upper bound is sharp. We also study all possible configurations of limit cycles. Our result is similar to other ones known for Abel type periodic differential equations although the proofs are quite different.
报告人简介:
赵育林, 中山大学数学学院(珠海)院长,教授,博士生导师.2007入选教育部新世纪优秀人才支持计划。赵育林教授从事常微分方程定性理论和分支理论的研究工作,包括弱化的Hilbert 十六问题、周期单调性、代数极限环、高阶极限环分支问题等,已在J. Differential Equation、Nonlinearity、中国科学(英文版)等期刊上发表多篇学术论文。研究成果获得广东省自然科学二等奖。